List of sequenced protist genomes

Last updated

This list of sequenced protist genomes contains all the protist species known to have publicly available complete genome sequences that have been assembled, annotated and published; draft genomes are not included, nor are organelle only sequences.

Contents

Alveolata

Alveolata are a group of protists which includes the Ciliophora, Apicomplexa and Dinoflagellata. Members of this group are of particular interest to science as the cause of serious human and livestock diseases.

OrganismTypeRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly statusLinks
Babesia bovis Apicomplexan Cattle pathogen8.2 Mb3,6712007 [1]
Breviolum minutim (Symbiodinium minutum; clade B1) Dinoflagellate Coral symbiont1.5 Gb47,014Okinawa Institute of Science and Technology2013 [2] DraftOIST Marine Genomics [3]
Cladocopium goreaui (Symbiodinium goreaui; Clade C1) Dinoflagellate Coral symbiont1.19 Gb35,913Reef Future Genomics (ReFuGe) 2020/ University of Queensland 2018 [4] DraftReFuGe 2020 [5]
Cladocopium C92 strain Y103 ( Symbiodinium sp. clade C; putative type C92) Dinoflagellate Foraminiferan symbiontUnknown (assembly size 0.70 Gb)65,832 Okinawa Institute of Science and Technology 2018 [6] DraftOIST Marine Genomics [3]
Cryptosporidium hominis
Strain:TU502
Apicomplexan Human pathogen10.4 Mb3,994 [7] Virginia Commonwealth University 2004 [7]
Cryptosporidium parvum
C- or genotype 2 isolate
Apicomplexan Human pathogen16.5 Mb3,807 [8] UCSF and University of Minnesota2004 [8]
Eimeria tenella
Houghton strain
Apicomplexan Intestinal parasite of domestic fowl55-60 Mb [9] The Wellcome Trust Sanger Institute [10] Available for download; [10] 2007 for Chr 1 [11]
Fugacium kawagutii CS156=CCMP2468 ( Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont?1.07 Gb26,609Reef Future Genomics (ReFuGe) 2020 / University of Queensland 2018 [4] DraftReFuGe 2020 [5]
Fugacium kawagutii CCMP2468 ( Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont?1.18 Gb36,850 University of Connecticut / Xiamen University 2015 [12] DraftS. kawagutii genome project [13]
Neospora caninum Apicomplexan Pathogen for cattle and dogs62 Mb [14] The Wellcome Trust Sanger Institute [15] Available for download [15]
Paramecium tetraurelia Ciliate Model organism72 Mb39,642 [16] Genoscope 2006 [16]
Polarella glacialis CCMP1383 Dinoflagellate Psychrophile, Antarctic3.02 Gb (diploid), 1.48 Gbp (haploid)58,232 University of Queensland 2020 [17] DraftUQ eSpace [18]
Polarella glacialis CCMP2088 Dinoflagellate Psychrophile, Arctic2.65 Gb (diploid), 1.30 Gbp (haploid)51,713 University of Queensland 2020 [17] DraftUQ eSpace [18]
Plasmodium berghei ANKA Apicomplexan Rabbit malaria18.5 Mb [19] 4,900; [19] 11,654 (UniProt)
Plasmodium chabaudi Apicomplexan Rodent malaria19.8 Mb [20] 5,000 [20]
Plasmodium falciparum
Clone:3D7
Apicomplexan Human pathogen (malaria)22.9 Mb5,268 [21] Malaria Genome Project Consortium2002 [21]
Plasmodium knowlesi Apicomplexan Primate pathogen (malaria)23.5 Mb5,188 [22] 2008 [22]
Plasmodium vivax Apicomplexan Human pathogen (malaria)26.8 Mb5,433 [23] 2008 [23]
Plasmodium yoelii yoelii
Strain:17XNL
Apicomplexan Rodent pathogen (malaria)23.1 Mb5,878 [24] TIGR and NMRC2002 [24]
Symbiodinium microadriaticum (clade A) Dinoflagellate Coral symbiont1.1 Gb49,109 King Abdullah University of Science and Technology 2016 [25] DraftReef Genomics [26]
Symbiodinium A3 strain Y106 ( Symbiodinium sp. clade A3) Dinoflagellate symbiontUnknown (assembly size 0.77 Gb)69,018 Okinawa Institute of Science and Technology 2018 [6] DraftOIST Marine Genomics [3]
Tetrahymena thermophila Ciliate Model organism104 Mb27,000 [27] 2006 [27]
Theileria annulata
Ankara clone C9
Apicomplexan Cattle pathogen8.3 Mb3,792Sanger2005 [28]
Theileria parva
Strain:Muguga
Apicomplexan Cattle pathogen (African east coast fever)8.3 Mb4,035 [29] TIGR and the International Livestock Research Institute2005 [29]
Toxoplasma gondii
GT1, ME49, VEG strains
Apicomplexan Mammal pathogen63 Mb (RefSeq)8,100 (UniProt) - 9,000 (EuPathDB)J. Craig Venter Inst., TIGR, UPenn.2008 [30]

Amoebozoa

Amoebozoa are a group of motile amoeboid protists, members of this group move or feed by means of temporary projections, called pseudopods. The best known member of this group is the slime mold, which has been studied for centuries; other members include the Archamoebae, Tubulinea and Flabellinia. Some Amoeboza cause disease.

OrganismTypeRelevanceGenome sizeNumber of genes predictedOrganizationYear of completion
Dictyostelium discoideum
Strain:AX4
Slime mold Model organism34 Mb12,500 [31] Consortium from University of Cologne, Baylor College of Medicine and the Sanger Centre2005 [31]
Entamoeba histolytica
HM1:IMSS
Parasitic protozoanHuman pathogen (amoebic dysentery)23.8 Mb9,938 [32] TIGR, Sanger Institute and the London School of Hygiene and Tropical Medicine2005 [32]
Polysphondylium pallidum
Strain:PN500
Slime mold Model organism12,939, [33] 12,350 (UniProt)Leibniz Institute for Age Research2009 [33]

Chromista

The Chromista are a group of protists that contains the algal phyla Heterokontophyta (stramenopiles), Haptophyta and Cryptophyta. Members of this group are mostly studied for evolutionary interest.

OrganismTypeRelevanceGenome sizeNumber of genes predictedOrganizationYear of completion
Albugo laibachii Oomycete Arabidopsis parasite, biotroph37 Mb [34] 13,032 [34] 2011 [34]
Aureococcus anophagefferens
Strain:CCMP1984
Pelagophyte DOE Joint Genome Institute2011 [35]
Bigelowiella natans Chlorarachniophyte Model organism nucleomorph: 0.331 Mb
nuclear: 95 Mb
nucleomorph: 373 [36]
nuclear: >21,000 [37]
nucleomorph: Hall Institute Australia, Univ. Melbourne, Univ. BC
nuclear: Dalhousie University, Halifax, Nova Scotia, Canada
2006, [36] 2012 [37]
Chroomonas mesostigmaticaCCMP1168 Cryptophyta 2012 [38]
Cryptomonas paramecium Cryptophyta 2010 [39]
Emiliania huxleyi
CCMP1516
Coccolithophore (phytoplankton)141.7 Mb [40] 30,569 [40] Joint Genome Institute 2013 [40]
Emiliania huxleyi
RCC1217
Coccolithophore (phytoplankton)Available for download [41]
Fragilariopsis cylindrus Diatom 61.1 Mb [42] 21,066 [42] Joint Genome Institute 2017 [42]
Guillardia theta Cryptomonad Model organism0.551 Mb (nucleomorph genome only)
87 Mb (nuclear genome)
nucleomorph: 465 [43] 513, 598 (UniProt)
nuclear: >21,000 [37]
nucleomorph: Canadian Institute of Advanced Research, Philipps-University Marburg and the University of British Columbia
nuclear: Dalhousie University, Halifax, Nova Scotia, Canada
2001, [43] 2012 [37]
Hemiselmis andersenii
CCMP7644
Cryptomonad Model organism0.572 Mb
(nucleomorph genome only)
472, [44] 502 (UniProt)Canadian Institute of Advanced Research2007 [44]
Hyaloperonospora arabidopsidis Oomycete obligate biotroph, Arabidopsis pathogenWUGSC2010 [45]
Nannochloropis gaditana
Strain: CCMP526
Eustigmatophyte Lipid-producing, biotechnology applicationsVirginia Bioinformatics Institute2012 [46]
Phaeodactylum tricornutum
Strain: CCAP1055/1
Diatom 27.4 Mb10,402 Joint Genome Institute 2008 [47]
Phytophthora infestans
Strain:T30-4
Oomycete Great Famine of Ireland pathogenBroad Institute2009 [48]
Phytophthora ramorum Oomycete Sudden oak death pathogen65 Mb (7x)15,743 Joint Genome Institute et al.2006 [49]
Phytophthora sojae Oomycete Soybean pathogen95 Mb (9x)19,027 Joint Genome Institute et al.2006 [49]
Pseudo-nitzschia multiseries Diatom Joint Genome Institute
Plasmodiophora brassicae Plasmodiophorid Clubroot disease pathogen25.5 Mb9,730 SLU Uppsala et al.2015 [50]
Pythium ultimum Oomycete ubiquitous plant pathogen42.8 Mb15,290 Michigan State University et al.2010 [51]
Thalassiosira pseudonana
Strain:CCMP 1335
Diatom 34.5 Mb11,242 [52] Joint Genome Institute and the University of Washington 2004 [52]

Excavata

Excavata is a group of related free living and symbiotic protists; it includes the Metamonada, Loukozoa, Euglenozoa and Percolozoa. They are researched for their role in human disease.

OrganismTypeRelevanceGenome sizeNumber of genes predictedOrganizationYear of completion
Giardia enterica (G. duodenalis assemblage B)Parasitic protozoanHuman pathogen (Giardiasis)11.7 Mb4,470 [53] multicenter collaboration2009 [53]
Giardia duodenalis
ATCC 50803
(Giardia duodenalis assemblage A)
Parasitic protozoanHuman pathogen (Giardiasis)11.7 Mb6,470, [54] 7,153 (UniProt)Karolinska Institutet, Marine Biological Laboratory2007 [54]
Leishmania braziliensis
MHOM/BR/75M2904
Parasitic protozoanHuman pathogen (Leishmaniasis)33 Mb8,314 [55] Sanger Institute, Universidade de São Paulo, Imperial College2007 [55]
Leishmania infantum
JPCM5
Parasitic protozoanHuman pathogen (Visceral leishmaniasis)33 Mb8,195 [55] Sanger Institute, Imperial College and University of Glasgow2007 [55]
Leishmania major
Strain:Friedlin
Parasitic protozoanHuman pathogen (Cutaneous leishmaniasis)32.8 Mb8,272 [56] Sanger Institute and Seattle Biomedical Research Institute 2005 [56]
Naegleria gruberi amoeboflagellate Diverged from other eukaryotes over 1 billion years ago41 Mb [57] 15,727 [57] 2010 [57]
Trichomonas vaginalis Parasitic protozoanHuman pathogen (Trichomoniasis)160 Mb59,681 [58] TIGR2007 [58]
Trypanosoma brucei
Strain:TREU927/4 GUTat10.1
Parasitic protozoanHuman pathogen (Sleeping sickness)26 Mb9,068 [59] Sanger Institute and TIGR2005 [59]
Trypanosoma cruzi
Strain:CL Brener TC3
Parasitic protozoanHuman pathogen (Chagas disease)34 Mb22,570 [60] TIGR, Seattle Biomedical Research Institute and Uppsala University2005 [60]

Opisthokonts, basal

Opisthokonts are a group of eukaryotes that include both animals and fungi as well as basal groups that are not classified in these groups. These basal opisthokonts are reasonably categorized as protists and include choanoflagellates, which are the sister or near-sister group of animals.

OrganismTypeRelevanceGenome sizeNumber of genes predictedOrganizationYear of completion
Monosiga brevicollis Choanoflagellate close relative of metazoans41.6 Mb9,200 [61] Joint Genome Institute2007 [61]

See also

Related Research Articles

<span class="mw-page-title-main">Genome</span> All genetic material of an organism

In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

<span class="mw-page-title-main">Genomics</span> Discipline in genetics

Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

<span class="mw-page-title-main">Dinoflagellate</span> Unicellular algae with two flagella

The dinoflagellates are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered protists. Dinoflagellates are mostly marine plankton, but they also are common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey.

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Nucleomorph</span>

Nucleomorphs are small, vestigial eukaryotic nuclei found between the inner and outer pairs of membranes in certain plastids. They are thought to be vestiges of primitive red and green algal nuclei that were engulfed by a larger eukaryote. Because the nucleomorph lies between two sets of membranes, nucleomorphs support the endosymbiotic theory and are evidence that the plastids containing them are complex plastids. Having two sets of membranes indicate that the plastid, a prokaryote, was engulfed by a eukaryote, an alga, which was then engulfed by another eukaryote, the host cell, making the plastid an example of secondary endosymbiosis.

<span class="mw-page-title-main">Comparative genomics</span> Field of biological research

Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.

<span class="mw-page-title-main">Genome size</span> Amount of DNA contained in a genome

Genome size is the total amount of DNA contained within one copy of a single complete genome. It is typically measured in terms of mass in picograms or less frequently in daltons, or as the total number of nucleotide base pairs, usually in megabases. One picogram is equal to 978 megabases. In diploid organisms, genome size is often used interchangeably with the term C-value.

<span class="mw-page-title-main">Chromosome conformation capture</span>

Chromosome conformation capture techniques are a set of molecular biology methods used to analyze the spatial organization of chromatin in a cell. These methods quantify the number of interactions between genomic loci that are nearby in 3-D space, but may be separated by many nucleotides in the linear genome. Such interactions may result from biological functions, such as promoter-enhancer interactions, or from random polymer looping, where undirected physical motion of chromatin causes loci to collide. Interaction frequencies may be analyzed directly, or they may be converted to distances and used to reconstruct 3-D structures.

<span class="mw-page-title-main">GNG11</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11 is a protein that in humans is encoded by the GNG11 gene.

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

<i>Amphidinium</i> Genus of dinoflagellates

Amphidinium is a genus of dinoflagellates. The type for the genus is Amphidinium operculatum Claparède & Lachmann. The genus includes the species Amphidinium carterae which is used as a model organism.

Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.

A plant genome assembly represents the complete genomic sequence of a plant species, which is assembled into chromosomes and other organelles by using DNA fragments that are obtained from different types of sequencing technology.

References

  1. Brayton KA, Lau AO, Herndon DR, Hannick L, Kappmeyer LS, Berens SJ, et al. (October 2007). "Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa". PLOS Pathogens. 3 (10): 1401–13. doi: 10.1371/journal.ppat.0030148 . PMC   2034396 . PMID   17953480.
  2. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. (August 2013). "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology. 23 (15): 1399–408. Bibcode:2013CBio...23.1399S. doi: 10.1016/j.cub.2013.05.062 . PMID   23850284.
  3. 1 2 3 "OIST Marine Genomics". marinegenomics.oist.jp. Retrieved 2018-08-22.
  4. 1 2 Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. (2018). "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology. 1: 95. doi:10.1038/s42003-018-0098-3. PMC   6123633 . PMID   30271976.
  5. 1 2 "ReFuGe 2020 Data Site". refuge2020.reefgenomics.org. Retrieved 2018-09-07.
  6. 1 2 Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, et al. (June 2018). "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics. 19 (1): 458. doi: 10.1186/s12864-018-4857-9 . PMC   6001144 . PMID   29898658.
  7. 1 2 Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, et al. (October 2004). "The genome of Cryptosporidium hominis". Nature. 431 (7012): 1107–12. Bibcode:2004Natur.431.1107X. doi: 10.1038/nature02977 . PMID   15510150.
  8. 1 2 Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. (April 2004). "Complete genome sequence of the apicomplexan, Cryptosporidium parvum". Science. 304 (5669): 441–5. Bibcode:2004Sci...304..441A. doi:10.1126/science.1094786. PMID   15044751. S2CID   26434820.
  9. genedb
  10. 1 2 Sanger
  11. Ling KH, Rajandream MA, Rivailler P, Ivens A, Yap SJ, Madeira AM, et al. (March 2007). "Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization". Genome Research. 17 (3): 311–9. doi:10.1101/gr.5823007. PMC   1800922 . PMID   17284678.
  12. Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. (November 2015). "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science. 350 (6261): 691–4. Bibcode:2015Sci...350..691L. doi: 10.1126/science.aad0408 . PMID   26542574.
  13. "S. kawagutii data site". web.malab.cn/symka_new. Retrieved 2018-08-22.
  14. genedb
  15. 1 2 Sanger
  16. 1 2 Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, et al. (November 2006). "Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia". Nature. 444 (7116): 171–8. Bibcode:2006Natur.444..171A. doi: 10.1038/nature05230 . PMID   17086204.
  17. 1 2 Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. (2020). "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology. 18 (1): 56. doi: 10.1186/s12915-020-00782-8 . PMC   7245778 . PMID   32448240.
  18. 1 2 Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). "Polarella data site". doi:10.14264/uql.2020.222. S2CID   216542238.{{cite journal}}: Cite journal requires |journal= (help)
  19. 1 2 Ensembl entry
  20. 1 2 Ensembl entry
  21. 1 2 Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. (October 2002). "Genome sequence of the human malaria parasite Plasmodium falciparum". Nature. 419 (6906): 498–511. Bibcode:2002Natur.419..498G. doi:10.1038/nature01097. PMC   3836256 . PMID   12368864.
  22. 1 2 Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. (October 2008). "The genome of the simian and human malaria parasite Plasmodium knowlesi". Nature. 455 (7214): 799–803. Bibcode:2008Natur.455..799P. doi:10.1038/nature07306. PMC   2656934 . PMID   18843368.
  23. 1 2 Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. (October 2008). "Comparative genomics of the neglected human malaria parasite Plasmodium vivax". Nature. 455 (7214): 757–63. Bibcode:2008Natur.455..757C. doi:10.1038/nature07327. PMC   2651158 . PMID   18843361.
  24. 1 2 Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, et al. (October 2002). "Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii". Nature. 419 (6906): 512–9. Bibcode:2002Natur.419..512C. doi: 10.1038/nature01099 . PMID   12368865.
  25. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. (December 2016). "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports. 6: 39734. Bibcode:2016NatSR...639734A. doi:10.1038/srep39734. PMC   5177918 . PMID   28004835.
  26. "Reef Genomics Data Site". smic.reefgenomics.org. Retrieved 2018-08-22.
  27. 1 2 Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. (September 2006). "Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote". PLOS Biology. 4 (9): e286. doi: 10.1371/journal.pbio.0040286 . PMC   1557398 . PMID   16933976.
  28. Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W, et al. (July 2005). "Genome of the host-cell transforming parasite Theileria annulata compared with T. parva". Science. 309 (5731): 131–3. Bibcode:2005Sci...309..131P. doi: 10.1126/science.1110418 . PMID   15994557.
  29. 1 2 Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, et al. (July 2005). "Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes". Science. 309 (5731): 134–7. Bibcode:2005Sci...309..134G. doi: 10.1126/science.1110439 . PMID   15994558.
  30. NCBI Genome T. gondii ME49
  31. 1 2 Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, et al. (May 2005). "The genome of the social amoeba Dictyostelium discoideum". Nature. 435 (7038): 43–57. Bibcode:2005Natur.435...43E. doi:10.1038/nature03481. PMC   1352341 . PMID   15875012.
  32. 1 2 Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, et al. (February 2005). "The genome of the protist parasite Entamoeba histolytica" (PDF). Nature. 433 (7028): 865–8. Bibcode:2005Natur.433..865L. doi: 10.1038/nature03291 . PMID   15729342. S2CID   14231289.
  33. 1 2 NCBI accession
  34. 1 2 3 Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, et al. (July 2011). Ausubel FM (ed.). "Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana". PLOS Biology. 9 (7): e1001094. doi: 10.1371/journal.pbio.1001094 . PMC   3130010 . PMID   21750662.
  35. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, et al. (March 2011). "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4352–7. Bibcode:2011PNAS..108.4352G. doi: 10.1073/pnas.1016106108 . PMC   3060233 . PMID   21368207.
  36. 1 2 Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (June 2006). "Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus". Proceedings of the National Academy of Sciences of the United States of America. 103 (25): 9566–71. Bibcode:2006PNAS..103.9566G. doi: 10.1073/pnas.0600707103 . PMC   1480447 . PMID   16760254.
  37. 1 2 3 4 Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. Bibcode:2012Natur.492...59C. doi: 10.1038/nature11681 . PMID   23201678.
  38. Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012). "Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity". Genome Biology and Evolution. 4 (11): 1162–75. doi:10.1093/gbe/evs090. PMC   3514955 . PMID   23042551.
  39. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2012). "Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set". Genome Biology and Evolution. 3: 44–54. doi:10.1093/gbe/evq082. PMC   3017389 . PMID   21147880.
  40. 1 2 3 Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. (July 2013). "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature. 499 (7457): 209–13. Bibcode:2013Natur.499..209.. doi: 10.1038/nature12221 . hdl: 1854/LU-4120924 . PMID   23760476.
  41. Entry
  42. 1 2 3 Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, et al. (January 2017). "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus". Nature. 541 (7638): 536–540. Bibcode:2017Natur.541..536M. doi: 10.1038/nature20803 . hdl: 10754/622831 . PMID   28092920.
  43. 1 2 Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, et al. (April 2001). "The highly reduced genome of an enslaved algal nucleus". Nature. 410 (6832): 1091–6. Bibcode:2001Natur.410.1091D. doi: 10.1038/35074092 . PMID   11323671.
  44. 1 2 Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (December 2007). "Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function". Proceedings of the National Academy of Sciences of the United States of America. 104 (50): 19908–13. Bibcode:2007PNAS..10419908L. doi: 10.1073/pnas.0707419104 . PMC   2148396 . PMID   18077423.
  45. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, et al. (December 2010). "Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome". Science. 330 (6010): 1549–1551. Bibcode:2010Sci...330.1549B. doi:10.1126/science.1195203. PMC   3971456 . PMID   21148394.
  46. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (February 2012). "Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana". Nature Communications. 3 (2): 686. Bibcode:2012NatCo...3..686R. doi:10.1038/ncomms1688. PMC   3293424 . PMID   22353717.
  47. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. (November 2008). "The Phaeodactylum genome reveals the evolutionary history of diatom genomes". Nature. 456 (7219): 239–44. Bibcode:2008Natur.456..239B. doi: 10.1038/nature07410 . PMID   18923393.
  48. Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, et al. (September 2009). "Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans" (PDF). Nature. 461 (7262): 393–8. Bibcode:2009Natur.461..393H. doi: 10.1038/nature08358 . PMID   19741609. S2CID   4385549.
  49. 1 2 Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, et al. (September 2006). "Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis". Science. 313 (5791): 1261–6. Bibcode:2006Sci...313.1261T. doi:10.1126/science.1128796. OSTI   1165482. PMID   16946064. S2CID   21287860.
  50. Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, et al. (June 2015). "The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases". Scientific Reports. 5: 11153. Bibcode:2015NatSR...511153S. doi:10.1038/srep11153. PMC   4471660 . PMID   26084520.
  51. Carbone A, Siu A, Patel R (September 2010). "Pediatric atopic dermatitis: a review of the medical management". The Annals of Pharmacotherapy. 44 (9): 1448–58. doi:10.1345/aph.1P098. PMID   20628042. S2CID   44649671.
  52. 1 2 Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. (October 2004). "The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism". Science. 306 (5693): 79–86. Bibcode:2004Sci...306...79A. CiteSeerX   10.1.1.690.4884 . doi:10.1126/science.1101156. PMID   15459382. S2CID   8593895.
  53. 1 2 Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, et al. (August 2009). Petri W (ed.). "Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?". PLOS Pathogens. 5 (8): e1000560. doi: 10.1371/journal.ppat.1000560 . PMC   2723961 . PMID   19696920.
  54. 1 2 Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, et al. (September 2007). "Genomic minimalism in the early diverging intestinal parasite Giardia lamblia". Science. 317 (5846): 1921–6. Bibcode:2007Sci...317.1921M. doi:10.1126/science.1143837. PMID   17901334. S2CID   29299317.
  55. 1 2 3 4 Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. (July 2007). "Comparative genomic analysis of three Leishmania species that cause diverse human disease". Nature Genetics. 39 (7): 839–47. doi:10.1038/ng2053. PMC   2592530 . PMID   17572675.
  56. 1 2 Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. (July 2005). "The genome of the kinetoplastid parasite, Leishmania major". Science. 309 (5733): 436–42. Bibcode:2005Sci...309..436I. doi:10.1126/science.1112680. PMC   1470643 . PMID   16020728.
  57. 1 2 3 Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. (March 2010). "The genome of Naegleria gruberi illuminates early eukaryotic versatility". Cell. 140 (5): 631–42. doi: 10.1016/j.cell.2010.01.032 . PMID   20211133. S2CID   13901186.
  58. 1 2 Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. (January 2007). "Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis". Science. 315 (5809): 207–12. Bibcode:2007Sci...315..207C. doi:10.1126/science.1132894. PMC   2080659 . PMID   17218520.
  59. 1 2 Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. (July 2005). "The genome of the African trypanosome Trypanosoma brucei". Science. 309 (5733): 416–22. Bibcode:2005Sci...309..416B. doi:10.1126/science.1112642. PMID   16020726. S2CID   18649858.
  60. 1 2 El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. (July 2005). "The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease". Science. 309 (5733): 409–15. Bibcode:2005Sci...309..409E. doi:10.1126/science.1112631. hdl: 11336/80500 . PMID   16020725. S2CID   3830267.
  61. 1 2 King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, et al. (February 2008). "The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans". Nature. 451 (7180): 783–8. Bibcode:2008Natur.451..783K. doi:10.1038/nature06617. PMC   2562698 . PMID   18273011.