List of sequenced fungi genomes

Last updated

This list of sequenced fungi genomes contains all the fungal species known to have publicly available complete genome sequences that have been assembled, annotated and published; draft genomes are not included, nor are organelle only sequences.

Contents

Ascomycota

Dothideomycetes

Eurotiomycetes

Leotiomycetes

Pezizomycetes

Saccharomycetes

Schizosaccharomycetes

Sordariomycetes

Basidiomycota

Agaricomycetes

Dacrymycetes

Pucciniomycetes (formerly Urediniomycetes)

Tremellomycetes

Ustilaginomycetes

Wallemiomycetes

Chytridiomycota

Chytridiomycota includes fungi with spores that have flagella (zoospores) and are a sister group to more advanced land fungi that lack flagella. Several chytrid species are pathogens, but have not had their genomes sequenced yet.

Blastocladiomycota

Neocallimastigomycota

Microsporidia

Mucoromycota

Mucoromycotina

Glomeromycotina

Mortierellomycotina

Zoopagomycota

Kickxellomycotina

Entomophthoromycotina

Zoopagomycotina

See also

Related Research Articles

<span class="mw-page-title-main">Yeast</span> Informal group of fungi

Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitute 1% of all described fungal species.

<i>Aspergillus niger</i> Species of fungus

Aspergillus niger is a mold classified within the Nigri section of the Aspergillus genus. The Aspergillus genus consists of common molds found throughout the environment within soil and water, on vegetation, in fecal matter, on decomposing matter, and suspended in the air. Species within this genus often grow quickly and can sporulate within a few days of germination. A combination of characteristics unique to A. niger makes the microbe invaluable to the production of many acids, proteins and bioactive compounds. Characteristics including extensive metabolic diversity, high production yield, secretion capability, and the ability to conduct post-translational modifications are responsible for A. niger's robust production of secondary metabolites. A. niger's capability to withstand extremely acidic conditions makes it especially important to the industrial production of citric acid.

<span class="mw-page-title-main">Yeast artificial chromosome</span> Genetically engineered chromosome derived from the DNA of yeast

Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking. This is the process that was initially used for the Human Genome Project, however due to stability issues, YACs were abandoned for the use of bacterial artificial chromosome

<i>Candida albicans</i> Species of fungus

Candida albicans is an opportunistic pathogenic yeast that is a common member of the human gut flora. It can also survive outside the human body. It is detected in the gastrointestinal tract and mouth in 40–60% of healthy adults. It is usually a commensal organism, but it can become pathogenic in immunocompromised individuals under a variety of conditions. It is one of the few species of the genus Candida that cause the human infection candidiasis, which results from an overgrowth of the fungus. Candidiasis is, for example, often observed in HIV-infected patients. C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human tissue. C. albicans, C. tropicalis, C. parapsilosis, and C. glabrata are together responsible for 50–90% of all cases of candidiasis in humans. A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans. By one estimate, invasive candidiasis contracted in a hospital causes 2,800 to 11,200 deaths yearly in the US. Nevertheless, these numbers may not truly reflect the true extent of damage this organism causes, given new studies indicating that C. albicans can cross the blood–brain barrier in mice.

<span class="mw-page-title-main">Comparative genomics</span> Field of biological research

Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.

Heterothallic species have sexes that reside in different individuals. The term is applied particularly to distinguish heterothallic fungi, which require two compatible partners to produce sexual spores, from homothallic ones, which are capable of sexual reproduction from a single organism.

<i>Aspergillus</i> Genus of fungi

Aspergillus is a genus consisting of several hundred mold species found in various climates worldwide.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with most multicellular eukaryotes such as mammals, where the adults are usually diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

<i>Kluyveromyces lactis</i> Species of fungus

Kluyveromyces lactis is a Kluyveromyces yeast commonly used for genetic studies and industrial applications. Its name comes from the ability to assimilate lactose and convert it into lactic acid.

<span class="mw-page-title-main">Dimorphic fungus</span> Fungi that can exist as mold or yeast

Dimorphic fungi are fungi that can exist in the form of both mold and yeast. This is usually brought about by change in temperature and the fungi are also described as thermally dimorphic fungi. An example is Talaromyces marneffei, a human pathogen that grows as a mold at room temperature, and as a yeast at human body temperature.

Pathogenic fungi are fungi that cause disease in humans or other organisms. Although fungi are eukaryotic, many pathogenic fungi are microorganisms. Approximately 300 fungi are known to be pathogenic to humans; their study is called "medical mycology". Fungal infections are estimated to kill more people than either tuberculosis or malaria—about two million people per year.

A killer yeast is a yeast, such as Saccharomyces cerevisiae, which is able to secrete one of a number of toxic proteins which are lethal to susceptible cells. These "killer toxins" are polypeptides that kill sensitive cells of the same or related species, often functioning by creating pores in target cell membranes. These yeast cells are immune to the toxic effects of the protein due to an intrinsic immunity. Killer yeast strains can be a problem in commercial processing because they can kill desirable strains. The killer yeast system was first described in 1963. Study of killer toxins helped to better understand the secretion pathway of yeast, which is similar to those of more complex eukaryotes. It also can be used in treatment of some diseases, mainly those caused by fungi.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Reference genome</span> Digital nucleic acid sequence database

A reference genome is a digital nucleic acid sequence database, assembled by scientists as a representative example of the set of genes in one idealized individual organism of a species. As they are assembled from the sequencing of DNA from a number of individual donors, reference genomes do not accurately represent the set of genes of any single individual organism. Instead, a reference provides a haploid mosaic of different DNA sequences from each donor. For example, one of the most recent human reference genomes, assembly GRCh38/hg38, is derived from >60 genomic clone libraries. There are reference genomes for multiple species of viruses, bacteria, fungus, plants, and animals. Reference genomes are typically used as a guide on which new genomes are built, enabling them to be assembled much more quickly and cheaply than the initial Human Genome Project. Reference genomes can be accessed online at several locations, using dedicated browsers such as Ensembl or UCSC Genome Browser.

<i>Candida auris</i> Species of fungus

Candida auris is a species of fungus that grows as yeast. It is one of the few species of the genus Candida which cause candidiasis in humans. Often, candidiasis is acquired in hospitals by patients with weakened immune systems. C. auris can cause invasive candidiasis (fungemia) in which the bloodstream, the central nervous system, and internal organs are infected. It has attracted widespread attention because of its multiple drug resistance. Treatment is also complicated because it is easily misidentified as other Candida species.

Plant–fungus horizontal gene transfer is the movement of genetic material between individuals in the plant and fungus kingdoms. Horizontal gene transfer is universal in fungi, viruses, bacteria, and other eukaryotes. Horizontal gene transfer research often focuses on prokaryotes because of the abundant sequence data from diverse lineages, and because it is assumed not to play a significant role in eukaryotes.

<span class="mw-page-title-main">Fungal DNA barcoding</span> Identification of fungal species thanks to specific DNA sequences

Fungal DNA barcoding is the process of identifying species of the biological kingdom Fungi through the amplification and sequencing of specific DNA sequences and their comparison with sequences deposited in a DNA barcode database such as the ISHAM reference database, or the Barcode of Life Data System (BOLD). In this attempt, DNA barcoding relies on universal genes that are ideally present in all fungi with the same degree of sequence variation. The interspecific variation, i.e., the variation between species, in the chosen DNA barcode gene should exceed the intraspecific (within-species) variation.

Fungal genomes are among the smallest genomes of eukaryotes. The sizes of fungal genomes range from less than 10 Mbp to hundreds of Mbp. The average genome size is approximately 37 Mbp in Ascomycota, 47 Mbp in Basidiomycota and 75 Mbp in Oomycota. The sizes and gene numbers of the smallest genomes of free-living fungi such as those of Wallemia ichthyophaga, Wallemia mellicola or Malassezia restricta are comparable to bacterial genomes. The genome of the extensively researched yeast Saccharomyces cerevisiae contains approximately 12 Mbp and was the first completely sequenced eukaryotic genome. Due to their compact size fungal genomes can be sequenced with less resources than most other eukaryotic genomes and are thus important models for research. Some fungi exist as stable haploid, diploid, or polyploid cells, others change ploidy in response to environmental conditions and aneuploidy is also observed in novel environments or during periods of stress.

References

  1. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, et al. (July 2014). "Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species". BMC Genomics. 15 (1): 549. doi: 10.1186/1471-2164-15-549 . PMC   4227064 . PMID   24984952.
  2. Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, et al. (2013). "Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii". PLOS ONE. 8 (8): e71328. Bibcode:2013PLoSO...871328L. doi: 10.1371/journal.pone.0071328 . PMC   3744574 . PMID   23977017.
  3. Nislow, Corey; Stajich, Jason E.; Gostinčar, Cene; Lenassi, Metka; Cimerman, Nina Gunde; Plemenitaš, Ana; Formby, Sean; Neira, Mauricio; Flibotte, Stephane (2017-07-01). "Insight into the Recent Genome Duplication of the Halophilic Yeast Hortaea werneckii: Combining an Improved Genome with Gene Expression and Chromatin Structure". G3: Genes, Genomes, Genetics. 7 (7): 2015–2022. doi:10.1534/g3.117.040691. ISSN   2160-1836. PMC   5499112 . PMID   28500048.
  4. Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, et al. (February 2011). "Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations". Nature Communications. 2 (2): 202. Bibcode:2011NatCo...2..202R. doi:10.1038/ncomms1189. PMC   3105345 . PMID   21326234.
  5. Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QM, et al. (September 2012). "Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina". BMC Genomics. 13 (1): 493. doi: 10.1186/1471-2164-13-493 . PMC   3477038 . PMID   22992219.
  6. "Home - Pseudocercospora (Mycosphaerella) fijiensis v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  7. Goodwin SB, M'barek SB, Dhillon B, Wittenberg AH, Crane CF, Hane JK, et al. (June 2011). "Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis". PLOS Genetics. 7 (6): e1002070. doi: 10.1371/journal.pgen.1002070 . PMC   3111534 . PMID   21695235.
  8. Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, et al. (November 2007). "Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum". The Plant Cell. 19 (11): 3347–68. doi:10.1105/tpc.107.052829. PMC   2174895 . PMID   18024570.
  9. Team, diArk. "diArk - species_list". www.diark.org. Retrieved 24 November 2018.
  10. "JGI GOLD | Project".
  11. "JGI GOLD | Project".
  12. "JGI GOLD | Project".
  13. 1 2 Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, et al. (2012). "Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection". mBio. 3 (5): e00259-12. doi:10.1128/mBio.00259-12. PMC   3445971 . PMID   22951933.
  14. "Home - Aspergillus aculeatus ATCC16872 v1.1". genome.jgi-psf.org. Retrieved 24 November 2018.
  15. "Home - Aspergillus carbonarius ITEM 5010 v3". genome.jgi-psf.org. Retrieved 24 November 2018.
  16. 1 2 3 Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, et al. (April 2008). "Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus". PLOS Genetics. 4 (4): e1000046. doi: 10.1371/journal.pgen.1000046 . PMC   2289846 . PMID   18404212.
  17. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. (December 2005). "Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus". Nature. 438 (7071): 1151–6. Bibcode:2005Natur.438.1151N. doi: 10.1038/nature04332 . hdl: 10261/71531 . PMID   16372009.
  18. Futagami T, Mori K, Yamashita A, Wada S, Kajiwara Y, Takashita H, et al. (November 2011). "Genome sequence of the white koji mold Aspergillus kawachii IFO 4308, used for brewing the Japanese distilled spirit shochu". Eukaryotic Cell. 10 (11): 1586–7. doi:10.1128/EC.05224-11. PMC   3209066 . PMID   22045919.
  19. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. (December 2005). "Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae". Nature. 438 (7071): 1105–15. Bibcode:2005Natur.438.1105G. doi: 10.1038/nature04341 . PMID   16372000.
  20. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. (February 2007). "Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88". Nature Biotechnology. 25 (2): 221–31. doi: 10.1038/nbt1282 . hdl: 1887/67447 . PMID   17259976.
  21. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. (December 2005). "Genome sequencing and analysis of Aspergillus oryzae" (PDF). Nature. 438 (7071): 1157–61. Bibcode:2005Natur.438.1157M. doi: 10.1038/nature04300 . PMID   16372010.
  22. "DiArk | species_list".
  23. 1 2 3 Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, et al. (October 2009). "Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives". Genome Research. 19 (10): 1722–31. doi:10.1101/gr.087551.108. PMC   2765278 . PMID   19717792.
  24. Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, et al. (October 2011). "Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis". PLOS Genetics. 7 (10): e1002345. doi: 10.1371/journal.pgen.1002345 . PMC   3203195 . PMID   22046142.
  25. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, et al. (October 2008). "Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum" (PDF). Nature Biotechnology. 26 (10): 1161–8. doi: 10.1038/nbt.1498 . PMID   18820685.
  26. 1 2 Marcet-Houben M, Ballester AR, de la Fuente B, Harries E, Marcos JF, González-Candelas L, Gabaldón T (November 2012). "Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus". BMC Genomics. 13: 646. doi: 10.1186/1471-2164-13-646 . PMC   3532085 . PMID   23171342.
  27. Woo PC, Lau SK, Liu B, Cai JJ, Chong KT, Tse H, et al. (December 2011). "Draft genome sequence of Penicillium marneffei strain PM1". Eukaryotic Cell. 10 (12): 1740–1. doi:10.1128/EC.05255-11. PMC   3232717 . PMID   22131218.
  28. 1 2 Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, et al. (August 2011). "Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea". PLOS Genetics. 7 (8): e1002230. doi: 10.1371/journal.pgen.1002230 . PMC   3158057 . PMID   21876677.
  29. Youssar L, Grüning BA, Erxleben A, Günther S, Hüttel W (February 2012). "Genome sequence of the fungus Glarea lozoyensis: the first genome sequence of a species from the Helotiaceae family". Eukaryotic Cell. 11 (2): 250. doi:10.1128/EC.05302-11. PMC   3272893 . PMID   22302591.
  30. Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, et al. (2012). "Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides". PLOS Genetics. 8 (3): e1002558. doi: 10.1371/journal.pgen.1002558 . PMC   3291568 . PMID   22396667.
  31. Sossah FL, Liu Z, Yang C, Okorley BA, Sun L, Fu Y, Li Y (February 2019). "Cladobotryum protrusum Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom". Genes. 10 (2): 124. doi: 10.3390/genes10020124 . PMC   6409746 . PMID   30744046.
  32. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, et al. (April 2010). "Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis". Nature. 464 (7291): 1033–8. Bibcode:2010Natur.464.1033M. doi: 10.1038/nature08867 . hdl: 2318/100278 . PMID   20348908.
  33. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, et al. (April 2004). "The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome". Science. 304 (5668): 304–7. Bibcode:2004Sci...304..304D. doi:10.1126/science.1095781. PMID   15001715. S2CID   26130646.
  34. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al. (May 2004). "The diploid genome sequence of Candida albicans". Proceedings of the National Academy of Sciences of the United States of America. 101 (19): 7329–34. Bibcode:2004PNAS..101.7329J. doi: 10.1073/pnas.0401648101 . PMC   409918 . PMID   15123810.
  35. 1 2 3 4 5 6 Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. (June 2009). "Evolution of pathogenicity and sexual reproduction in eight Candida genomes". Nature. 459 (7247): 657–62. Bibcode:2009Natur.459..657B. doi:10.1038/nature08064. PMC   2834264 . PMID   19465905.
  36. EBI project page
  37. 1 2 3 4 Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. (July 2004). "Genome evolution in yeasts". Nature. 430 (6995): 35–44. Bibcode:2004Natur.430...35D. doi:10.1038/nature02579. PMID   15229592. S2CID   4399964.
  38. Riccombeni A, Vidanes G, Proux-Wéra E, Wolfe KH, Butler G (2012). "Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis". PLOS ONE. 7 (4): e35750. Bibcode:2012PLoSO...735750R. doi: 10.1371/journal.pone.0035750 . PMC   3338533 . PMID   22563396.
  39. Kumar S, Randhawa A, Ganesan K, Raghava GP, Mondal AK (July 2012). "Draft genome sequence of salt-tolerant yeast Debaryomyces hansenii var. hansenii MTCC 234". Eukaryotic Cell. 11 (7): 961–2. doi:10.1128/EC.00137-12. PMC   3416502 . PMID   22744717.
  40. Piškur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, et al. (July 2012). "The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties". International Journal of Food Microbiology. 157 (2): 202–9. doi:10.1016/j.ijfoodmicro.2012.05.008. PMID   22663979. S2CID   5098170.
  41. "Home - Ogataea polymorpha NCYC 495 leu1.1 v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  42. "JGI GOLD | Project".
  43. "JGI GOLD | Project".
  44. 1 2 Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, et al. (October 2009). "Comparative genomics of protoploid Saccharomycetaceae". Genome Research. 19 (10): 1696–709. doi:10.1101/gr.091546.109. PMC   2765284 . PMID   19525356.
  45. 1 2 3 4 Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, et al. (July 2003). "Finding functional features in Saccharomyces genomes by phylogenetic footprinting". Science. 301 (5629): 71–6. Bibcode:2003Sci...301...71C. doi: 10.1126/science.1084337 . PMID   12775844. S2CID   1305166.
  46. 1 2 3 4 Gordon JL, Armisén D, Proux-Wéra E, ÓhÉigeartaigh SS, Byrne KP, Wolfe KH (December 2011). "Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents". Proceedings of the National Academy of Sciences of the United States of America. 108 (50): 20024–9. Bibcode:2011PNAS..10820024G. doi: 10.1073/pnas.1112808108 . PMC   3250169 . PMID   22123960.
  47. 1 2 3 Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (May 2003). "Sequencing and comparison of yeast species to identify genes and regulatory elements". Nature. 423 (6937): 241–54. Bibcode:2003Natur.423..241K. doi:10.1038/nature01644. PMID   12748633. S2CID   1530261.
  48. 1 2 3 Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, et al. (June 2011). "The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus". G3. 1 (1): 11–25. doi:10.1534/g3.111.000273. PMC   3276118 . PMID   22384314.
  49. Liti G, Nguyen Ba AN, Blythe M, Müller CA, Bergström A, Cubillos FA, et al. (January 2013). "High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome". BMC Genomics. 14 (1): 69. doi: 10.1186/1471-2164-14-69 . PMC   3599269 . PMID   23368932.
  50. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, et al. (December 2009). "Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production". Genome Research. 19 (12): 2258–70. doi:10.1101/gr.091777.109. PMC   2792172 . PMID   19812109.
  51. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. (October 1996). "Life with 6000 genes". Science. 274 (5287): 546, 563–7. Bibcode:1996Sci...274..546G. doi:10.1126/science.274.5287.546. PMID   8849441. S2CID   16763139.
  52. Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, et al. (April 2010). "Genotype to phenotype: a complex problem". Science. 328 (5977): 469. Bibcode:2010Sci...328..469D. doi:10.1126/science.1189015. PMC   4412269 . PMID   20413493.
  53. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. (March 2009). "Population genomics of domestic and wild yeasts". Nature. 458 (7236): 337–41. Bibcode:2009Natur.458..337L. doi:10.1038/nature07743. PMC   2659681 . PMID   19212322.
  54. Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, et al. (April 2009). "Genome sequence of the lager brewing yeast, an interspecies hybrid". DNA Research. 16 (2): 115–29. doi:10.1093/dnares/dsp003. PMC   2673734 . PMID   19261625.
  55. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, et al. (March 2007). "Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis". Nature Biotechnology. 25 (3): 319–26. doi: 10.1038/nbt1290 . PMID   17334359.
  56. "Home - Spathaspora passalidarum NRRL Y-27907 v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  57. Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH (May 2007). "Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication". Proceedings of the National Academy of Sciences of the United States of America. 104 (20): 8397–402. Bibcode:2007PNAS..104.8397S. doi: 10.1073/pnas.0608218104 . PMC   1895961 . PMID   17494770.
  58. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, et al. (May 2011). "Comparative functional genomics of the fission yeasts". Science. 332 (6032): 930–6. Bibcode:2011Sci...332..930R. doi:10.1126/science.1203357. PMC   3131103 . PMID   21511999.
  59. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al. (February 2002). "The genome sequence of Schizosaccharomyces pombe". Nature. 415 (6874): 871–80. Bibcode:2002Natur.415..871W. doi: 10.1038/nature724 . PMID   11859360.
  60. 1 2 O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. (September 2012). "Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses". Nature Genetics. 44 (9): 1060–5. doi: 10.1038/ng.2372 . PMC   9754331 . PMID   22885923.
  61. Zámocký M, Tafer H, Chovanová K, Lopandic K, Kamlárová A, Obinger C (September 2016). "Genome sequence of the filamentous soil fungus Chaetomium cochliodes reveals abundance of genes for heme enzymes from all peroxidase and catalase superfamilies". BMC Genomics. 17 (1): 763. doi: 10.1186/s12864-016-3111-6 . PMC   5041501 . PMID   27681232.
  62. "Chaetomium globosum Genome Project". broadinstitute.org. 15 May 2015. Retrieved 24 November 2018.
  63. Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos DP, et al. (July 2011). "Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile". Cell. 146 (2): 277–89. doi: 10.1016/j.cell.2011.06.039 . PMID   21784248.
  64. 1 2 Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, et al. (March 2010). "Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium". Nature. 464 (7287): 367–73. Bibcode:2010Natur.464..367M. doi:10.1038/nature08850. PMC   3048781 . PMID   20237561.
  65. EBI project page
  66. "JGI GOLD | Project".
  67. "Genome of blue stain fungus evolved to bypass tree defense in mountain pine beetle epidemic: UBC research". ubc.ca. 24 January 2011. Retrieved 24 November 2018.
  68. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, et al. (April 2005). "The genome sequence of the rice blast fungus Magnaporthe grisea". Nature. 434 (7036): 980–6. Bibcode:2005Natur.434..980D. doi: 10.1038/nature03449 . PMID   15846337.
  69. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, et al. (January 2011). "Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum". PLOS Genetics. 7 (1): e1001264. doi: 10.1371/journal.pgen.1001264 . PMC   3017113 . PMID   21253567.
  70. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. (April 2003). "The genome sequence of the filamentous fungus Neurospora crassa". Nature. 422 (6934): 859–68. Bibcode:2003Natur.422..859G. doi: 10.1038/nature01554 . PMID   12712197.
  71. "Home - Neurospora tetrasperma FGSC 2508 mat A v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  72. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, et al. (August 2009). "The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion". PLOS Genetics. 5 (8): e1000618. doi: 10.1371/journal.pgen.1000618 . PMC   2725324 . PMID   19714214.
  73. Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, et al. (2008). "The genome sequence of the model ascomycete fungus Podospora anserina". Genome Biology. 9 (5): R77. doi: 10.1186/gb-2008-9-5-r77 . PMC   2441463 . PMID   18460219.
  74. "Home - Myceliophthora thermophila (Sporotrichum thermophile) v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  75. "Home - Thielavia terrestris v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  76. "Home - Trichoderma atroviride v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  77. 1 2 Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. (May 2008). "Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)". Nature Biotechnology. 26 (5): 553–60. doi: 10.1038/nbt1403 . PMID   18454138.
  78. "Home - Trichoderma virens Gv29-8 v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  79. Team, diArk. "diArk - species_list". www.diark.org. Retrieved 24 November 2018.
  80. "Home - Agaricus bisporus var bisporus (H97) v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  81. Gupta DK, Rühl M, Mishra B, Kleofas V, Hofrichter M, Herzog R, et al. (January 2018). "The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes". BMC Genomics. 19 (1): 48. doi: 10.1186/s12864-017-4430-y . PMC   5769442 . PMID   29334897.
  82. 1 2 3 4 5 6 7 8 9 10 11 12 Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. (June 2012). "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science. 336 (6089): 1715–9. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. hdl: 10261/60626 . OSTI   1165864. PMID   22745431. S2CID   37121590.
  83. Yuan Y, Wu F, Si J, Zhao YF, Dai YC (January 2019). "Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide". Genomics. 111 (1): 50–58. doi: 10.1016/j.ygeno.2017.12.013 . PMID   29288711.
  84. Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, et al. (June 2010). "Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)". Proceedings of the National Academy of Sciences of the United States of America. 107 (26): 11889–94. Bibcode:2010PNAS..10711889S. doi: 10.1073/pnas.1003391107 . PMC   2900686 . PMID   20547848.
  85. Tang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC, Diehl SV (April 2012). "Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa". Applied and Environmental Microbiology. 78 (7): 2272–81. Bibcode:2012ApEnM..78.2272T. doi:10.1128/AEM.06745-11. PMC   3302605 . PMID   22247176.
  86. Wang, Miao; Meng, Guoliang; Yang, Ying; Wang, Xiaofang; Xie, Rong; Dong, Caihong (January 2024). "Telomere-to-Telomere Genome Assembly of Tibetan Medicinal Mushroom Ganoderma leucocontextum and the First Copia Centromeric Retrotransposon in Macro-Fungi Genome". Journal of Fungi. 10 (1): 15. doi: 10.3390/jof10010015 . ISSN   2309-608X. PMC   10817607 . PMID   38248925.
  87. "Home - Heterobasidion annosum v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  88. Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, et al. (March 2008). "The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis". Nature. 452 (7183): 88–92. Bibcode:2008Natur.452...88M. doi: 10.1038/nature06556 . PMID   18322534.
  89. Shim D, Park SG, Kim K, Bae W, Lee GW, Ha BS, et al. (April 2016). "Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes". Journal of Biotechnology. 223: 24–5. doi:10.1016/j.jbiotec.2016.02.032. PMID   26924240.
  90. Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, et al. (November 2008). "A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao". BMC Genomics. 9: 548. doi: 10.1186/1471-2164-9-548 . PMC   2644716 . PMID   19019209.
  91. Zhu, Liping; Gao, Xia; Zhang, Meihua; Hu, Chunhui; Yang, Wujie; Guo, Lizhong; Yang, Song; Yu, Hailong; Yu, Hao (February 2023). "Whole Genome Sequence of an Edible Mushroom Oudemansiella raphanipes (Changgengu)". Journal of Fungi. 9 (2): 266. doi: 10.3390/jof9020266 . ISSN   2309-608X. PMC   9961838 . PMID   36836380.
  92. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, et al. (June 2004). "Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78". Nature Biotechnology. 22 (6): 695–700. doi: 10.1038/nbt967 . PMID   15122302.
  93. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, et al. (October 2011). "Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica". PLOS Pathogens. 7 (10): e1002290. doi: 10.1371/journal.ppat.1002290 . PMC   3192844 . PMID   22022265.
  94. "Home - Pleurotus ostreatus PC15 v2.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  95. Lam KL, Si K, Wu X, Tang S, Sun X, Kwan HS, Cheung PC (October 2018). "The diploid genome of the only sclerotia-forming wild-type species in the genus Pleurotus -Pleurotus tuber-regium - provides insights into the mechanism of its biomass conversion from lignocellulose substrates". Journal of Biotechnology. 283: 22–27. doi:10.1016/j.jbiotec.2018.07.009. PMID   30003974. S2CID   51617675.
  96. "Home - Postia placenta MAD 698-R v1.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  97. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. (September 2010). "Genome sequence of the model mushroom Schizophyllum commune". Nature Biotechnology. 28 (9): 957–63. doi: 10.1038/nbt.1643 . PMID   20622885.
  98. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, et al. (August 2011). "The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi". Science (Submitted manuscript). 333 (6043): 762–5. Bibcode:2011Sci...333..762E. doi:10.1126/science.1205411. PMID   21764756. S2CID   11022844.
  99. Hui, Jerome H. L.; Chan, Ting Fung; Chan, Leo Lai; Cheung, Siu Gin; Cheang, Chi Chiu; Fang, James Kar-Hei; Gaitan-Espitia, Juan Diego; Lau, Stanley Chun Kwan; Sung, Yik Hei; Wong, Chris Kong Chu; Yip, Kevin Yuk-Lap; Wei, Yingying; Chong, Tze Kiu; Law, Sean Tsz Sum; Nong, Wenyan (2024-04-25). "Genome assembly of the edible jelly fungus Dacryopinax spathularia (Dacrymycetaceae)". Gigabyte. 2024: 1–12. doi:10.46471/gigabyte.120. ISSN   2709-4715. PMC   11066560 . PMID   38707634.
  100. "Home - Melampsora larici-populina v1.0". genome.jgi.doe.gov. Retrieved 24 November 2018.
  101. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, et al. (May 2011). "Obligate biotrophy features unraveled by the genomic analysis of rust fungi". Proceedings of the National Academy of Sciences of the United States of America. 108 (22): 9166–71. Bibcode:2011PNAS..108.9166D. doi: 10.1073/pnas.1019315108 . PMC   3107277 . PMID   21536894.
  102. Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, et al. (2018-02-08). "Potential for re-emergence of wheat stem rust in the United Kingdom". Communications Biology. 1 (1): 13. doi:10.1038/s42003-018-0013-y. PMC   6053080 . PMID   30271900.
  103. 1 2 http://www.broadinstitute.org/annotation/genome/puccinia_group/MultiHome.html Broad Institute
  104. "Home - Rhodotorula graminis strain WP1 v1.1". genome.jgi-psf.org. Retrieved 24 November 2018.
  105. "JGI entry". jgi-psf.gov. Retrieved 24 November 2018.
  106. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, et al. (February 2005). "The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans". Science. 307 (5713): 1321–4. Bibcode:2005Sci...307.1321L. doi:10.1126/science.1103773. PMC   3520129 . PMID   15653466.
  107. "JGI GOLD | Project".
  108. 1 2 Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, et al. (November 2007). "Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens". Proceedings of the National Academy of Sciences of the United States of America. 104 (47): 18730–5. Bibcode:2007PNAS..10418730X. doi: 10.1073/pnas.0706756104 . PMC   2141845 . PMID   18000048.
  109. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, et al. (December 2010). "Pathogenicity determinants in smut fungi revealed by genome comparison". Science. 330 (6010): 1546–8. Bibcode:2010Sci...330.1546S. doi:10.1126/science.1195330. PMID   21148393. S2CID   19689043.
  110. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, et al. (November 2006). "Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis". Nature. 444 (7115): 97–101. Bibcode:2006Natur.444...97K. doi: 10.1038/nature05248 . hdl: 10261/339644 . PMID   17080091.
  111. Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (September 2013). "Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent". BMC Genomics. 14: 617. doi: 10.1186/1471-2164-14-617 . PMC   3849046 . PMID   24034603.
  112. Padamsee M, Kumar TK, Riley R, Binder M, Boyd A, Calvo AM, et al. (March 2012). "The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction". Fungal Genetics and Biology (Submitted manuscript). 49 (3): 217–26. doi:10.1016/j.fgb.2012.01.007. PMID   22326418.
  113. "Batrachochytrium Genome Project". broadinstitute.org. 25 August 2016. Retrieved 24 November 2018.
  114. "Home - Batrachochytrium dendrobatidis JAM81 v1.0". genome.jgi.doe.gov. Retrieved 24 November 2018.
  115. 1 2 "Update for our Microbial Eukaryotes website users". broadinstitute.org. 29 February 2016. Retrieved 24 November 2018.
  116. "Home - Gonapodya prolifera v1.0". genome.jgi.doe.gov. Retrieved 24 November 2018.
  117. "Home - Catenaria anguillulae PL171 v1.0". genome.jgi.doe.gov. Retrieved 24 November 2018.
  118. "Home - Piromyces sp. E2 v1.0". genome.jgi-psf.org. Retrieved 24 November 2018.
  119. Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, et al. (November 2001). "Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi". Nature. 414 (6862): 450–3. Bibcode:2001Natur.414..450K. doi: 10.1038/35106579 . PMID   11719806.
  120. Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ (September 2010). "The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis". Nature Communications. 1 (6): 77. Bibcode:2010NatCo...1...77C. doi:10.1038/ncomms1082. PMC   4355639 . PMID   20865802.
  121. Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, et al. (January 2009). "Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi". PLOS Pathogens. 5 (1): e1000261. doi: 10.1371/journal.ppat.1000261 . PMC   2607024 . PMID   19132089.
  122. Keeling PJ, Corradi N, Morrison HG, Haag KL, Ebert D, Weiss LM, et al. (July 2010). "The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism". Genome Biology and Evolution. 2: 304–9. doi:10.1093/gbe/evq022. PMC   2942035 . PMID   20624735.
  123. Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, et al. (June 2009). "Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees". PLOS Pathogens. 5 (6): e1000466. doi: 10.1371/journal.ppat.1000466 . PMC   2685015 . PMID   19503607.
  124. Corradi N, Haag KL, Pombert JF, Ebert D, Keeling PJ (2009). "Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions". Genome Biology. 10 (10): R106. doi: 10.1186/gb-2009-10-10-r106 . PMC   2784321 . PMID   19807911.
  125. Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. (July 2009). "Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication". PLOS Genetics. 5 (7): e1000549. doi: 10.1371/journal.pgen.1000549 . PMC   2699053 . PMID   19578406.
  126. Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, et al. (2011). "Genome characterization of the oleaginous fungus Mortierella alpina". PLOS ONE. 6 (12): e28319. Bibcode:2011PLoSO...628319W. doi: 10.1371/journal.pone.0028319 . PMC   3234268 . PMID   22174787.
  127. Stajich, Jason E.; Lovett, Brian; Ettinger, Cassandra L.; Carter-House, Derreck A.; Kurbessoian, Tania; Kasson, Matt T. (2022-08-29). Rokas, Antonis (ed.). "An Improved 1.5-Gigabase Draft Assembly of Massospora cicadina (Zoopagomycota), an Obligate Fungal Parasite of 13- and 17-Year Cicadas". Microbiology Resource Announcements. 11 (10): e00367–22. doi:10.1128/mra.00367-22. ISSN   2576-098X. PMC   9584336 . PMID   36036589.