List of sequenced archaeal genomes

Last updated

This list of sequenced archaeal genomes contains all the archaea known to have publicly available complete genome sequences that have been assembled, annotated and deposited in public databases. Methanococcus jannaschii was the first archaeon whose genome was sequenced, in 1996. [1]

Contents

Currently in this list there are 39 genomes belonging to Crenarchaeota species, 105 belonging to the Euryarchaeota, 1 genome belonging to Korarchaeota and to the Nanoarchaeota, 3 belonging to the Thaumarchaeota and 1 genome belonging to an unclassified Archaea, totalling 150 Archaeal genomes.

Crenarchaeota

Acidilobales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Acidilobus saccharovorans 345-151,496,0001,547 [2] CP001742 2010

Desulforococcales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Aeropyrum pernix K11,669,6952,694 [3] NC_000854 (NCBI Reference Sequence)1999
Desulfurococcus kamchatkensis 1221n1,365,0001,521 [4] CP001140 2009
Hyperthermus butylicus DSM 54561,667,0001,669 [5] CP000493 2007
Ignicoccus hospitalis KIN4/I, DSM 183861,297,0001,496 [6] CP000816 2008
Ignisphaera aggregans AQ1.S1, DSM 172301,875,0002,042 [7] CP002098 2010
Pyrolobus fumarii 1A, DSM 112041,843,0002,038 [8] CP002838 2011
Staphylothermus hellenicus P8, DSM 127101,580,0001,716 [9] CP002051 2011
Staphylothermus marinus F1, DSM 36391,570,0001,659 [10] CP000575 2011
Thermosphaera aggregans M11TL, DSM 114861,316,0001,457 [11] CP001939 2010

Sulfolobales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Acidianus hospitalis W12,137,0002,424 [12] CP002535 2011
Metallosphaera cuprina Ar-41,840,0002,077 [13] CP002656 2011
Metallosphaera sedula DSM 53482,191,0002,347 [14] CP000682 2008
Sulfolobus acidocaldarius DSM 6392,225,9592,223 [15] CP000077 2005
Sulfolobus islandicus HVE10/42,655,000 [16] CP002426 2011
Sulfolobus islandicus L.D.8.52,722,0002,996 [17] Chromosome CP001731

Plasmid pLD8501 CP001732

2009
Sulfolobus islandicus L.S.2.152,736,0003,068 [17] CP001399 2009
Sulfolobus islandicus M.14.252,608,0002,900 [17] CP001400 2009
Sulfolobus islandicus M.16.272,692,0002,956 [17] CP001401 2009
Sulfolobus islandicus M.16.42,586,0002,869 [17] CP001402 2009
Sulfolobus islandicus REY15A2,522,000 [16] CP002425 2011
Sulfolobus islandicus Y.G.57.142,702,0003,079 [17] CP001403 2009
Sulfolobus islandicus Y.N.15.512,812,0003,318 [17] Chromosome CP001404

Plasmid pYN01 CP001405

2009
Sulfolobus islandicus LAL14/12,465,1772,601 [18] CP003928 2013
Sulfolobus solfataricus P22,992,2452,995 [19] AE006641 2001
Sulfolobus solfataricus 98/22,668,0002,728DOE Joint Genome Institute CP001800 2009
Sulfolobus tokodaii 72,694,7652,826 [20] BA000023 2001

Thermoproteales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Caldivirga maquilingensis IC-1672,077,0002,011DOE Joint Genome Institute CP000852 2007
Pyrobaculum aerophilum IM22,222,4302,605 [21] AE009441 2002
Pyrobaculum arsenaticum PZ6, DSM 135142,121,0002,410DOE Joint Genome Institute CP000660 2007
Pyrobaculum calidifontis JCM 115482,009,0002,213DOE Joint Genome Institute CP000561 2007
Pyrobaculum islandicum DSM 41841,826,0002,063DOE Joint Genome Institute CP000504 2006
Pyrobaculum sp. 1860Unpublished [22] CP003098 2011
Thermofilum pendens Hrk 51,781,0001,930 [23] Chromosome CP000505

Plasmid pTPEN01 CP000506

2008
Thermoproteus neutrophilus V24Sta1,769,0002,053DOE Joint Genome Institute CP001014 2008
Thermoproteus tenax Kra11,841,0002,100 [24] FN869859 2011
Thermoproteus uzoniensis 768-201,936,0002,229 [25] CP002590 2011
Vulcanisaeta distributa DSM 144292,374,0002,592 [26] CP002100 2010
Vulcanisaeta moutnovskia 768-282,298,0002,393 [27] CP002529 2011

Euryarchaeota

Archaeoglobi

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Archaeoglobus fulgidus DSM43042,178,4002,407 [28] AE000782 1997
Archaeoglobus veneficus SNP6, DSM 111951,901,0002,194DOE Joint Genome Institute CP002588 2011
Archaeoglobus profundus Av18, DSM 56311,563,0001,911 [29] Chromosome CP001857

Plasmid pArcpr01 CP001858

2010
Ferroglobus placidus AEDII12DO, DSM 106422,196,0002,622 [30] CP001899 2011

Halobacteria

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Halalkalicoccus jeotgali B3, DSM 187963,690,0003925 [31] Chromosome I CP002062

Plasmid 1 CP002063
Plasmid 2 CP002064
Plasmid 3 CP002065
Plasmid 4 CP002066
Plasmid 5 CP002067
Plasmid 6 CP002068

2010
Haloarcula hispanica CGMCC 1.20493,484,0003,561 [32] Chromosome I CP002921

Chromosome II CP002922
Plasmid pHH400 CP002923

2011
Haloarcula marismortui ATCC 430493,131,7243,131 [33] Chromosome I AY596297

Chromosome II AY596298
Plasmid pNG100 AY596290
Plasmid pNG200 AY596291
Plasmid pNG300 AY596292
Plasmid pNG400 AY596293
Plasmid pNG500 AY596294
Plasmid pNG600 AY596295
Plasmid pNG700 AY596296

2004
Halobacterium salinarum R1, DSM 6712,000,0002,801 [34] Chromosome NC_010364

Plasmid PHS1 NC_010366
Plasmid PHS2 NC_010369
Plasmid PHS3 NC_010368
Plasmid PHS4 NC_010367

2008
Halobacterium speciesNRC-12,014,2392,058 [35] Chromosome NC_002607

Plasmid pNRC100 NC_002607
Plasmid pNRC200 NC_002608

2000
Halobiforma lacisalsi AJ5, JCM 129834,320,0004,682 [36] AGFZ00000000 2011
Haloferax volcanii DS2 [37] Chromosome CP001956

Plasmid pHV1 CP001957
Plasmid pHV2 CP001954
Plasmid pHV3 CP001953
Plasmid pHV4 CP001955

2010
Halogeometricum borinquense PR3, DSM 115513,920,0004,059 [38] Chromosome CP001690

Plasmid pHBOR01 CP001691
Plasmid pHBOR02 CP001692
Plasmid pHBOR03 CP001693
Plasmid pHBOR04 CP001694
Plasmid pHBOR05 CP001695

2009
Halomicrobium mukohataei arg-2, DSM 122863,332,0003,475 [39] Chromosome CP001688

Plasmid pHmuk01 CP001689

2009
Halopiger xanaduensis SH-63,668,0003,685DOE Joint Genome InstituteChromosome CP002839

Plasmid pHALXA01 CP002840
Plasmid pHALXA02 CP002841
Plasmid pHALXA03 CP002842

2011 (Chromosome)
Haloquadratum walsbyi C23, DSM 168543,148,000 [40] Chromosome FR746099

Plasmid PL6A FR746101
Plasmid PL6B FR746102
Plasmid PL100 FR746100

2011
Haloquadratum walsbyi HBSQ001, DSM 167903,132,0002,914 [41] Chromosome AM180088

Plasmid PL47 AM180089

2006
Halorhabdus tiamatea SARL4B3,840,0004,034 [42] AFNT00000000 2011
Halorhabdus utahensis AX-2, DSM 129403116 Kb3076 [43] CP001687 2009
Halorubrum lacusprofundi ATCC 492394,300,0003,725DOE Joint Genome InstituteChromosome 1 CP001365

Chromosome 2 CP001366
Plasmid pHLAC01 CP001367

2009 (Chromosomes 1 and 2)
Haloterrigena turkmenica VKM B-1734, DSM 55115,440,0005,351 [44] Chromosome CP001860

Plasmid pHTUR01 CP001861
Plasmid pHTUR02 CP001862
Plasmid pHTUR03 CP001863
Plasmid pHTUR04 CP001864
Plasmid pHTUR05 CP001865
Plasmid pHTUR06 CP001866

2010
Natrialba asiatica ATCC 700177 [45] Survey 2004
Natrialba magadii ATCC 430993,751,0004,364DOE Joint Genome Institute CP001932 2010
Natronomonas pharaonis DSM21602,595,2212,675 [46] Chromosome CR936257

Plasmid PL131 CR936258
Plasmid PL23 CR936259

2005

Methanobacteria

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Methanobacterium sp. AL-212,583,000DOE Joint Genome Institute,
Univ of Illinois at Urbana-Champaign
CP002551 2011
Methanobacterium sp. SWAN-12,546,0002,500DOE Joint Genome Institute,
Univ Illinois at Urbana-Champaign
CP002772 2011
Methanobacterium thermoautotrophicum delta-H1,751,3771,869 [47] AE000666 1997
Methanobrevibacter ruminantium M12,937,0002,283 [48] CP001719 2010
Methanobrevibacter smithii DSM 23751,704,0001,748Washington University ABYW00000000 2008
Methanobrevibacter smithii F1, DSM 23741,707,0001,749Washington University ABYV00000000 2010
Methanobrevibacter smithii PS, ATCC 350611,853,0001,841 [49] CP000678 2007
Methanobrevibacter smithii TS94A1,889,0001,808 [50] AELU00000000 2011
Methanobrevibacter smithii TS94B1,886,0001,856 [50] AELV00000000 2011
Methanobrevibacter smithii TS94C1,910,0001,812 [50] AELW00000000 2011
Methanobrevibacter smithii TS95A1,992,0001,961 [50] AELX00000000 2011
Methanobrevibacter smithii TS95B1,972,0001,895 [50] AELY00000000 2011
Methanobrevibacter smithii TS95C1,978,0001,874 [50] AELZ00000000 2011
Methanobrevibacter smithii TS95D2,011,0001,860 [50] AEMA00000000 2011
Methanobrevibacter smithii TS96A1,975,0001,852 [50] AEMB00000000 2011
Methanobrevibacter smithii TS96B1,869,0001,742 [50] AEMC00000000 2011
Methanobrevibacter smithii TS96C1,818,0001,764 [50] AEMD00000000 2011
Methanobrevibacter smithii TS145A1,782,0001,786 [50] AEKU00000000 2011
Methanobrevibacter smithii TS145B1,797,0001,880 [50] AELL00000000 2011
Methanobrevibacter smithii TS146A1,792,0001,823 [50] AELM00000000 2011
Methanobrevibacter smithii TS146B1,794,0001,814 [50] AELN00000000 2011
Methanobrevibacter smithii TS146C1,947,0002,355 [50] AELO00000000 2011
Methanobrevibacter smithii TS146D1,713,0001,693 [50] AELP00000000 2011
Methanobrevibacter smithii TS146E1,952,0001,887 [50] AELQ00000000 2011
Methanobrevibacter smithii TS147A2,008,0001,969 [50] AELR00000000 2011
Methanobrevibacter smithii TS147B1,965,0001,911 [50] AELS00000000 2011
Methanobrevibacter smithii TS147C1,973,0002,014 [50] AELT00000000 2011
Methanosphaera stadtmanae DSM 30911,767,4031,534 [51] CP000102 2005
Methanothermobacter marburgensis Marburg DSM 21331,634,0001,806 [52] CP001710 2010
Methanothermus fervidus V24S, DSM 20881,243,0001,361 [53] CP002278 2010

Methanococci

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Methanocaldococcus fervens AG861,485,0001,663DOE Joint Genome InstituteChromosome CP001696

Plasmid pMEFER01 CP001697

2009 (Chromosome)
Methanocaldococcus infernus ME1,328,0001,513DOE Joint Genome Institute CP002009 2010
Methanocaldococcus jannaschii DSM 26611,664,9701,715 [54] Chromosome: L77117

Large plasmid: L77118
Small plasmid: L77119

1996
Methanocaldococcus vulcanius M7, DSM 120941,746,0001,808DOE Joint Genome InstituteChromosome CP001787

Plasmid pMETVU01 CP001788
Plasmid pMETVU02 CP001789

2009
Methanocaldococcus sp. FS406-221,760,0001,893DOE Joint Genome InstituteChromosome CP001901

Plasmid pFS01 CP001902

2010 (Chromosome)
Methanococcus aeolicus Nankai-31,569,0001,554DOE Joint Genome Institute CP000743 2007
Methanococcus maripaludis C51,780,0001,896DOE Joint Genome Institute CP000609 2007
Methanococcus maripaludis C61,744,0001,874DOE Joint Genome Institute CP000867 2007
Methanococcus maripaludis C71,772,0001,858DOE Joint Genome Institute CP000745 2007
Methanococcus maripaludis S21,661,1371,722 [55] NC_005791 (NCBI Reference Sequence)2004
Methanococcus maripaludis X11,746,0001,892 [56] CP002913 2011
Methanococcus vannielii SB1,720,0001,755DOE Joint Genome Institute CP000742 2007
Methanococcus voltae A31,936,0001,768DOE Joint Genome Institute CP002057 2010
Methanothermococcus okinawensis IH11,662,0001,662DOE Joint Genome InstituteChromosome CP002792

Plasmid pMETOK01 CP002793

2011 (Chromosome)
Methanotorris igneus Kol5, DSM 56661,854,0001,843DOE Joint Genome Institute CP002737 2011

Methanomicrobia

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Candidatus Methanoregula boonei 6A82,542,0002,518DOE Joint Genome Institute [57] CP000780 2007
Methanocella sp. Rice Cluster I (RC-I)MRE503,179,9163103Genome sequence, [58] then taxonomic placement [59] AM114193 2005
Methanocella paludicola SANAE2,957,6353004 [60] AP011532 2011
Methanocella conradii HZ2541,316,3802512 [61] CP003243 2012
Methanococcoides burtonii DSM62422,575,0322,273 [62] CP000300 2009
Methanocorpusculum labreanum Z1,804,0001,830 [63] CP000559 2009
Methanoculleus marisnigri JR1, DSM 14982,478,0002,560 [64] CP000562 2009
Methanohalobium evestigatum Z-73032,406,2322,254DOE Joint Genome Institute [65] Chromosome: CP002069

Plasmid pMETEV01: CP002070

2010 (Chromosome)
Methanohalophilus mahii SLP, DSM 52192,012,0002,095 [66] CP001994 2010
Methanoplanus petrolearius SEBR 4847, DSM 115712,843,0002,881 [67] CP002117 2011
Methanosalsum zhilinae WeN5, DSM 40172,138,0002,086 CP002101 2010
Methanosaeta concilii GP-63,008,000 [68] CP002565 2010
Methanosaeta harundinacea 6Ac2,559,000 [22] CP003117 2011
Methanosaeta thermophila PT1,879,0001,785DOE Joint Genome Institute CP000477 2006
Methanosarcina acetivorans C2A5,751,4924,540 [69] AE010299 2002
Methanosarcina barkeri Fusaro, DSM 8044,837,4083,607 [70] Chromosome CP000099

Plasmid 1 CP000098

2006 (Chromosome)
Methanosarcina mazei Go14,096,3453,371 [71] AE008384 2002
Methanosphaerula palustris E1-9c, DSM 199582,922,0002,859DOE Joint Genome Institute CP001338 2008
Methanospirillum hungatei JF-13,544,7383,139DOE Joint Genome Institute CP000254 2006

Methanopyri

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Methanopyrus kandleri AV191,694,9691,691 [72] AE009439 2002

Thermococci

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Pyrococcus abyssi GE51,765,1181,784 [73] NC_000868 (NCBI Reference Sequence)2000
Pyrococcus furiosus DSM 36381,908,2562,065 [74] AE009950 1999
Pyrococcus horikoshii OT31,738,5052,061 [75] NC_000961 (NCBI Reference Sequence)1998
Pyrococcus sp. NA21,861,0001,984 [22] CP002670 2011
Pyrococcus yayanosii CH11,716,0001,952 [76] CP002779 2011
Thermococcus barophilus MP, DSM 118362,010,0002,196 [77] CP002372 2011
Thermococcus gammatolerans EJ32,045,0002,206 [78] CP001398 2009
Thermococcus kodakaraensis KOD12,088,7372,306 [79] AP006878 2005
Thermococcus onnurineus NA11,847,0002,027 [80] NC_011529 (NCBI Reference Sequence)2008
Thermococcus sibiricus MM 7391,845,0002,085 [81] CP001463 2009
Thermococcus sp. 45572,011,0002,181 [82] CP002920 2011
Thermococcus sp. AM42,086,0002,279 [83] CP002952 2011

Thermoplasmata

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Ferroplasma acidarmanus Fer11,865,0001,742 [84] AABC00000000 2007
Picrophilus torridus DSM 97901,545,8951,535 [85] AE017261 2004
Thermoplasma acidophilum DSM 17281,564,9061,478 [86] NC_002578 (NCBI Reference Sequence)2000
Thermoplasma volcanium GSS11,584,8041,526 [87] NC_002689 (NCBI Reference Sequence)2000

Unclassified Euryarchaeota

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Aciduliprofundum boonei T4691,486,0001,587DOE Joint Genome Institute CP001941 2010

Korarchaeota

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Candidatus Korarchaeum cryptofilum OPF81,590,0001,661 [88] CP000968 2008

Nanoarchaeota

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Nanoarchaeum equitans Kin4-M490,885536 [89] AE017199 2003

Thaumarchaeota

Cenarchaeales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Cenarchaeum symbiosum A2,045,0002,066 [90] DP000238 2006

Nitrosopumilales

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
Candidatus Nitrosoarchaeum limnia SFB11,769,0002,171 [91] AEGP00000000 2011
Nitrosopumilus maritimus SCM11,645,0001,842 [92] CP000866 2010

Unclassified Archaea

Species Strain Base Pairs Genes Reference GenBank identifierPublication year
halophilic archaeon sp. DL31Unpublished [22] CP002988 2011

See also

Related Research Articles

Ferroglobus is a genus of the Archaeoglobaceae.

Methanosarcina acetivorans is a versatile methane producing microbe which is found in such diverse environments as oil wells, trash dumps, deep-sea hydrothermal vents, and oxygen-depleted sediments beneath kelp beds. Only M. acetivorans and microbes in the genus Methanosarcina use all three known metabolic pathways for methanogenesis. Methanosarcinides, including M. acetivorans, are also the only archaea capable of forming multicellular colonies, and even show cellular differentiation. The genome of M. acetivorans is one of the largest archaeal genomes ever sequenced. Furthermore, one strain of M. acetivorans, M. a. C2A, has been identified to possess an F-type ATPase along with an A-type ATPase.

In taxonomy, Vulcanisaeta is a genus of the Thermoproteaceae.

In taxonomy, Methanolacinia is a genus of the Methanomicrobiaceae. The cells are bar-shaped and irregular 0.6 μm in diameter and 1.5–2.5 μm in length. They do not form endospores. Most are non-motile, but some have a single flagellum. They are strictly anaerobic. They produce methane through the reduction of carbon dioxide with hydrogen and cannot use formate, acetate or methyl compounds as substrates.

In taxonomy, Ignisphaera is a genus of the Desulfurococcales. Ignisphaera aggregans is a coccoid- shaped, fourth type strain that is strictly anaerobes with anaerobic respiration. This archaea species are hyperthermophiles that were found in New Zealand's hot springs in Kuirau Park, Rotorua.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

Thermococcus kodakarensis is a species of thermophilic archaea. The type strain T. kodakarensis KOD1 is one of the best-studied members of the genus.

The archaellum is a unique structure on the cell surface of many archaea that allows for swimming motility. The archaellum consists of a rigid helical filament that is attached to the cell membrane by a molecular motor. This molecular motor – composed of cytosolic, membrane, and pseudo-periplasmic proteins – is responsible for the assembly of the filament and, once assembled, for its rotation. The rotation of the filament propels archaeal cells in liquid medium, in a manner similar to the propeller of a boat. The bacterial analog of the archaellum is the flagellum, which is also responsible for their swimming motility and can also be compared to a rotating corkscrew. Although the movement of archaella and flagella is sometimes described as "whip-like", this is incorrect, as only cilia from Eukaryotes move in this manner. Indeed, even "flagellum" is a misnomer, as bacterial flagella also work as propeller-like structures.

Pyrobaculum aerophilum is a single-celled microorganism in the genus Pyrobaculum. The first Pyrobaculum species to be sequenced was P. aerophilum. It is a rod-shaped hyperthermophilic archaeum first isolated from a boiling marine water hole at Maronti Beach, Ischia. It forms characteristic terminal spherical bodies like Thermoproteus and Pyrobaculum. Its type strain is IM2; DSM 7523). Its optimum temperature for growth is around boiling point for water. Its optimum pH for growth is 7.0. Sulfur was found to inhibit its growth.

Methanothermus fervidus is a species of methanogen. It is notable for being extremely thermophilic. Its cells are rod-shaped; its complex cell envelope exhibits two layers, each about 12 nm thick; the inner represents the pseudomurein sacculus and the outer a protein envelope. The type strain is Methanothermus fervidus Stetter 1982. The cells are motile, strictly anaerobic and stain Gram positive. They can grow at temperatures as high as 97 °C. Strain V24ST can subsist on carbon dioxide and hydrogen alone. Its genome is 1,243,342 bp in length.

Thauera aminoaromatica is a Gram-negative, bacterium from the genus of Thauera. The complete genome of Thauera aminoaromatica is sequenced.

Sulfobacillus acidophilus is a species of moderately thermophilic mineral-sulphide-oxidizing bacteria. It is Gram-positive, acidophilic and ferrous-iron-oxidising as well.

Pyrodictium abyssi is a species of heterotrophic marine archaeal hyperthermophile that can grow at 110 °C (230 °F). Its type strain is AV2.

Syntrophobacter fumaroxidans is a species of syntrophic propionate-degrading sulfate-reducing bacterium. Strain MPOBT is the type strain. Its genome has been fully sequenced.

Thermococcus barophilus is a piezophilic and hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. It is anaerobic and sulfur-metabolising, with type strain MPT.

Saccharolobus solfataricus is a species of thermophilic archaeon. It was transferred from the genus Sulfolobus to the new genus Saccharolobus with the description of Saccharolobus caldissimus in 2018.

Starkeya novella is a chemolithoautotrophic and methylotrophic bacteria from the family Xanthobacteraceae which has been isolated from soil. Starkeya novella has the ability to oxidise thiosulfate. The complete genome of Starkeya novella is sequenced.

The Coriobacteriia are a class of Gram-positive bacteria within the Actinomycetota phylum. Species within this group are nonsporulating, strict or facultative anaerobes that are capable of thriving in a diverse set of ecological niches. Gordonibacter species are the only members capable of motility by means of flagella within the class. Several species within the Coriobacteriia class have been implicated with human diseases that range in severity. Atopobium, Olsenella, and Cryptobacterium species have responsible for human oral infections including periodontitis, halitosis, and other endodontic infections. Eggerthella species have been associated with severe blood bacteraemia and ulcerative colitis.

Vibrio tubiashii is a Gram-negative, rod-shaped (0.5 um-1.5 um) marine bacterium that uses a single polar flagellum for motility. It has been implicated in several diseases of marine organisms.

References

  1. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, et al. (August 1996). "Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii". Science. 273 (5278): 1058–73. Bibcode:1996Sci...273.1058B. doi:10.1126/science.273.5278.1058. PMID   8688087. S2CID   41481616.
  2. Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (August 2010). "The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs". Applied and Environmental Microbiology. 76 (16): 5652–7. Bibcode:2010ApEnM..76.5652M. doi:10.1128/AEM.00599-10. PMC   2918975 . PMID   20581186.
  3. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, et al. (April 1999). "Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1". DNA Research. 6 (2): 83–101, 145–52. doi: 10.1093/dnares/6.2.83 . PMID   10382966.
  4. Ravin NV, Mardanov AV, Beletsky AV, Kublanov IV, Kolganova TV, Lebedinsky AV, et al. (April 2009). "Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis". Journal of Bacteriology. 191 (7): 2371–9. doi:10.1128/JB.01525-08. PMC   2655497 . PMID   19114480.
  5. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, et al. (May 2007). "The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C". Archaea. 2 (2): 127–35. doi: 10.1155/2007/745987 . PMC   2686385 . PMID   17350933.
  6. Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, et al. (2008). "A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans". Genome Biology. 9 (11): R158. doi: 10.1186/gb-2008-9-11-r158 . PMC   2614490 . PMID   19000309.
  7. Göker M, Held B, Lapidus A, Nolan M, Spring S, Yasawong M, et al. (August 2010). "Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1)". Standards in Genomic Sciences. 3 (1): 66–75. doi:10.4056/sigs.1072907. PMC   3035270 . PMID   21304693.
  8. Anderson I, Göker M, Nolan M, Lucas S, Hammon N, Deshpande S, et al. (July 2011). "Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A)". Standards in Genomic Sciences. 4 (3): 381–92. doi:10.4056/sigs.2014648. PMC   3156397 . PMID   21886865.
  9. Anderson I, Wirth R, Lucas S, Copeland A, Lapidus A, Cheng JF, et al. (October 2011). "Complete genome sequence of Staphylothermus hellenicus P8". Standards in Genomic Sciences. 5 (1): 12–20. doi:10.4056/sigs.2054696. PMC   3236042 . PMID   22180806.
  10. Anderson IJ, Dharmarajan L, Rodriguez J, Hooper S, Porat I, Ulrich LE, et al. (April 2009). "The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota". BMC Genomics. 10: 145. doi: 10.1186/1471-2164-10-145 . PMC   2678158 . PMID   19341479.
  11. Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, et al. (June 2010). "Complete genome sequence of Thermosphaera aggregans type strain (M11TL)". Standards in Genomic Sciences. 2 (3): 245–59. doi:10.4056/sigs.821804. PMC   3035292 . PMID   21304709.
  12. You XY, Liu C, Wang SY, Jiang CY, Shah SA, Prangishvili D, et al. (July 2011). "Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles". Extremophiles. 15 (4): 487–97. doi:10.1007/s00792-011-0379-y. PMC   3119797 . PMID   21607549.
  13. Liu LJ, You XY, Zheng H, Wang S, Jiang CY, Liu SJ (July 2011). "Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring". Journal of Bacteriology. 193 (13): 3387–8. doi:10.1128/JB.05038-11. PMC   3133273 . PMID   21551305.
  14. Auernik KS, Maezato Y, Blum PH, Kelly RM (February 2008). "The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism". Applied and Environmental Microbiology. 74 (3): 682–92. Bibcode:2008ApEnM..74..682A. doi:10.1128/AEM.02019-07. PMC   2227735 . PMID   18083856.
  15. Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. (July 2005). "The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota". Journal of Bacteriology. 187 (14): 4992–9. doi:10.1128/JB.187.14.4992-4999.2005. PMC   1169522 . PMID   15995215.
  16. 1 2 Guo L, Brügger K, Liu C, Shah SA, Zheng H, Zhu Y, et al. (April 2011). "Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies". Journal of Bacteriology. 193 (7): 1672–80. doi:10.1128/JB.01487-10. PMC   3067641 . PMID   21278296.
  17. 1 2 3 4 5 6 7 Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (May 2009). "Biogeography of the Sulfolobus islandicus pan-genome". Proceedings of the National Academy of Sciences of the United States of America. 106 (21): 8605–10. Bibcode:2009PNAS..106.8605R. doi: 10.1073/pnas.0808945106 . PMC   2689034 . PMID   19435847.
  18. Jaubert C, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, et al. (April 2013). "Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon". Open Biology. 3 (4): 130010. doi:10.1098/rsob.130010. PMC   3718332 . PMID   23594878.
  19. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, et al. (July 2001). "The complete genome of the crenarchaeon Sulfolobus solfataricus P2". Proceedings of the National Academy of Sciences of the United States of America. 98 (14): 7835–40. Bibcode:2001PNAS...98.7835S. doi: 10.1073/pnas.141222098 . PMC   35428 . PMID   11427726.
  20. Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, et al. (August 2001). "Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7". DNA Research. 8 (4): 123–40. doi: 10.1093/dnares/8.4.123 . PMID   11572479.
  21. Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (January 2002). "Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum". Proceedings of the National Academy of Sciences of the United States of America. 99 (2): 984–9. Bibcode:2002PNAS...99..984F. doi: 10.1073/pnas.241636498 . PMC   117417 . PMID   11792869.
  22. 1 2 3 4 "GOLD".
  23. Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, et al. (April 2008). "Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction". Journal of Bacteriology. 190 (8): 2957–65. doi:10.1128/JB.01949-07. PMC   2293246 . PMID   18263724.
  24. Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, et al. (2011). "The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota". PLOS ONE. 6 (10): e24222. Bibcode:2011PLoSO...624222S. doi: 10.1371/journal.pone.0024222 . PMC   3189178 . PMID   22003381.
  25. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (June 2011). "Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768-20". Journal of Bacteriology. 193 (12): 3156–7. doi:10.1128/JB.00409-11. PMC   3133184 . PMID   21478349.
  26. Mavromatis K, Sikorski J, Pabst E, Teshima H, Lapidus A, Lucas S, et al. (September 2010). "Complete genome sequence of Vulcanisaeta distributa type strain (IC-017)". Standards in Genomic Sciences. 3 (2): 117–25. doi:10.4056/sigs.1113067. PMC   3035369 . PMID   21304741.
  27. Gumerov VM, Mardanov AV, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (May 2011). "Complete genome sequence of "Vulcanisaeta moutnovskia" strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta". Journal of Bacteriology. 193 (9): 2355–6. doi:10.1128/JB.00237-11. PMC   3133093 . PMID   21398550.
  28. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, et al. (November 1997). "The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus". Nature. 390 (6658): 364–70. Bibcode:1997Natur.390..364K. doi: 10.1038/37052 . PMID   9389475.
  29. von Jan M, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng JF, et al. (June 2010). "Complete genome sequence of Archaeoglobus profundus type strain (AV18)". Standards in Genomic Sciences. 2 (3): 327–46. doi:10.4056/sigs.942153. PMC   3035285 . PMID   21304717.
  30. Anderson I, Risso C, Holmes D, Lucas S, Copeland A, Lapidus A, et al. (October 2011). "Complete genome sequence of Ferroglobus placidus AEDII12DO". Standards in Genomic Sciences. 5 (1): 50–60. doi:10.4056/sigs.2225018. PMC   3236036 . PMID   22180810.
  31. Roh SW, Nam YD, Nam SH, Choi SH, Park HS, Bae JW (September 2010). "Complete genome sequence of Halalkalicoccus jeotgali B3(T), an extremely halophilic archaeon". Journal of Bacteriology. 192 (17): 4528–9. doi:10.1128/JB.00663-10. PMC   2937367 . PMID   20601480.
  32. Liu H, Wu Z, Li M, Zhang F, Zheng H, Han J, et al. (November 2011). "Complete genome sequence of Haloarcula hispanica, a Model Haloarchaeon for studying genetics, metabolism, and virus-host interaction". Journal of Bacteriology. 193 (21): 6086–7. doi:10.1128/JB.05953-11. PMC   3194904 . PMID   21994921.
  33. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, et al. (November 2004). "Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea". Genome Research. 14 (11): 2221–34. doi:10.1101/gr.2700304. PMC   525680 . PMID   15520287.
  34. Pfeiffer F, Schuster SC, Broicher A, Falb M, Palm P, Rodewald K, et al. (April 2008). "Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1". Genomics. 91 (4): 335–46. doi: 10.1016/j.ygeno.2008.01.001 . PMID   18313895.
  35. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, et al. (October 2000). "Genome sequence of Halobacterium species NRC-1". Proceedings of the National Academy of Sciences of the United States of America. 97 (22): 12176–81. Bibcode:2000PNAS...9712176N. doi: 10.1073/pnas.190337797 . PMC   17314 . PMID   11016950.
  36. Jiang X, Wang S, Cheng H, Huo Y, Zhang X, Zhu X, et al. (December 2011). "Genome sequence of Halobiforma lacisalsi AJ5, an extremely halophilic archaeon which harbors a bop gene". Journal of Bacteriology. 193 (24): 7023–4. doi:10.1128/JB.06282-11. PMC   3232858 . PMID   22123770.
  37. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, et al. (March 2010). Friedberg I (ed.). "The complete genome sequence of Haloferax volcanii DS2, a model archaeon". PLOS ONE. 5 (3): e9605. Bibcode:2010PLoSO...5.9605H. doi: 10.1371/journal.pone.0009605 . PMC   2841640 . PMID   20333302.
  38. Malfatti S, Tindall BJ, Schneider S, Fähnrich R, Lapidus A, Labuttii K, et al. (September 2009). "Complete genome sequence of Halogeometricum borinquense type strain (PR3)". Standards in Genomic Sciences. 1 (2): 150–9. doi:10.4056/sigs.23264. PMC   3035229 . PMID   21304651.
  39. Tindall BJ, Schneider S, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, et al. (November 2009). "Complete genome sequence of Halomicrobium mukohataei type strain (arg-2)". Standards in Genomic Sciences. 1 (3): 270–7. doi:10.4056/sigs.42644. PMC   3035239 . PMID   21304667.
  40. Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K, Schuster SC, et al. (2011). "Haloquadratum walsbyi: limited diversity in a global pond". PLOS ONE. 6 (6): e20968. Bibcode:2011PLoSO...620968D. doi: 10.1371/journal.pone.0020968 . PMC   3119063 . PMID   21701686.
  41. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, et al. (July 2006). "The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity". BMC Genomics. 7: 169. doi: 10.1186/1471-2164-7-169 . PMC   1544339 . PMID   16820047.
  42. Antunes A, Alam I, Bajic VB, Stingl U (September 2011). "Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake". Journal of Bacteriology. 193 (17): 4553–4. doi:10.1128/JB.05462-11. PMC   3165509 . PMID   21705593.
  43. Anderson I, Tindall BJ, Pomrenke H, Göker M, Lapidus A, Nolan M, et al. (November 2009). "Complete genome sequence of Halorhabdus utahensis type strain (AX-2)". Standards in Genomic Sciences. 1 (3): 218–25. doi:10.4056/sigs.31864. PMC   3035240 . PMID   21304660.
  44. Saunders E, Tindall BJ, Fähnrich R, Lapidus A, Copeland A, Del Rio TG, et al. (February 2010). "Complete genome sequence of Haloterrigena turkmenica type strain (4k)". Standards in Genomic Sciences. 2 (1): 107–16. doi:10.4056/sigs.681272. PMC   3035258 . PMID   21304683.
  45. Goo YA, Roach J, Glusman G, Baliga NS, Deutsch K, Pan M, et al. (January 2004). "Low-pass sequencing for microbial comparative genomics". BMC Genomics. 5 (1): 3. doi: 10.1186/1471-2164-5-3 . PMC   331400 . PMID   14718067.
  46. Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (October 2005). "Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis". Genome Research. 15 (10): 1336–43. doi:10.1101/gr.3952905. PMC   1240075 . PMID   16169924.
  47. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, et al. (November 1997). "Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics". Journal of Bacteriology. 179 (22): 7135–55. doi:10.1128/jb.179.22.7135-7155.1997. PMC   179657 . PMID   9371463.
  48. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. (January 2010). "The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions". PLOS ONE. 5 (1): e8926. Bibcode:2010PLoSO...5.8926L. doi: 10.1371/journal.pone.0008926 . PMC   2812497 . PMID   20126622.
  49. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. (June 2007). "Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut". Proceedings of the National Academy of Sciences of the United States of America. 104 (25): 10643–8. Bibcode:2007PNAS..10410643S. doi: 10.1073/pnas.0704189104 . PMC   1890564 . PMID   17563350.
  50. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, et al. (March 2011). "Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins". Proceedings of the National Academy of Sciences of the United States of America. 108 (Suppl 1): 4599–606. Bibcode:2011PNAS..108.4599H. doi: 10.1073/pnas.1000071108 . PMC   3063581 . PMID   21317366.
  51. Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, et al. (January 2006). "The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis". Journal of Bacteriology. 188 (2): 642–58. doi:10.1128/JB.188.2.642-658.2006. PMC   1347301 . PMID   16385054.
  52. Liesegang H, Kaster AK, Wiezer A, Goenrich M, Wollherr A, Seedorf H, et al. (November 2010). "Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism". Journal of Bacteriology. 192 (21): 5850–1. doi:10.1128/JB.00844-10. PMC   2953689 . PMID   20802048.
  53. Anderson I, Djao OD, Misra M, Chertkov O, Nolan M, Lucas S, et al. (November 2010). "Complete genome sequence of Methanothermus fervidus type strain (V24S)". Standards in Genomic Sciences. 3 (3): 315–24. doi:10.4056/sigs.1283367. PMC   3035299 . PMID   21304736.
  54. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, et al. (August 1996). "Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii". Science. 273 (5278): 1058–73. Bibcode:1996Sci...273.1058B. doi:10.1126/science.273.5278.1058. PMID   8688087. S2CID   41481616.
  55. Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, et al. (October 2004). "Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis". Journal of Bacteriology. 186 (20): 6956–69. doi:10.1128/JB.186.20.6956-6969.2004. PMC   522202 . PMID   15466049.
  56. Wang X, Greenfield P, Li D, Hendry P, Volk H, Sutherland TD (October 2011). "Complete genome sequence of a nonculturable Methanococcus maripaludis strain extracted in a metagenomic survey of petroleum reservoir fluids". Journal of Bacteriology. 193 (19): 5595. doi:10.1128/JB.05835-11. PMC   3187424 . PMID   21914896.
  57. "Candidatus Methanoregula boonei 6A8". http://genome.jgi-psf.org/metbo/metbo.info.html
  58. Erkel C, Kube M, Reinhardt R, Liesack W (July 2006). "Genome of Rice Cluster I archaea--the key methane producers in the rice rhizosphere". Science. 313 (5785): 370–2. Bibcode:2006Sci...313..370E. doi:10.1126/science.1127062. PMID   16857943. S2CID   42808519.
  59. Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (April 2008). "Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov". International Journal of Systematic and Evolutionary Microbiology. 58 (Pt 4): 929–36. doi: 10.1099/ijs.0.65571-0 . PMID   18398197.
  60. Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, et al. (2011). "Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales". PLOS ONE. 6 (7): e22898. Bibcode:2011PLoSO...622898S. doi: 10.1371/journal.pone.0022898 . PMC   3146512 . PMID   21829548.
  61. Lü Z, Lu Y (May 2012). "Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil". Journal of Bacteriology. 194 (9): 2398–9. doi:10.1128/JB.00207-12. PMC   3347084 . PMID   22493204.
  62. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, et al. (September 2009). "The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation". The ISME Journal. 3 (9): 1012–35. doi: 10.1038/ismej.2009.45 . PMID   19404327.
  63. Anderson IJ, Sieprawska-Lupa M, Goltsman E, Lapidus A, Copeland A, Glavina Del Rio T, et al. (September 2009). "Complete genome sequence of Methanocorpusculum labreanum type strain Z". Standards in Genomic Sciences. 1 (2): 197–203. doi:10.4056/sigs.35575. PMC   3035222 . PMID   21304657.
  64. Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, et al. (September 2009). "Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1". Standards in Genomic Sciences. 1 (2): 189–96. doi:10.4056/sigs.32535. PMC   3035220 . PMID   21304656.
  65. "Info - Methanohalobium evestigatum Z-7303". Archived from the original on 2015-06-30. Retrieved 2012-03-08.
  66. Spring S, Scheuner C, Lapidus A, Lucas S, Glavina Del Rio T, Tice H, et al. (December 2010). "The genome sequence of Methanohalophilus mahii SLP(T) reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments". Archaea. 2010: 690737. doi: 10.1155/2010/690737 . PMC   3017947 . PMID   21234345.
  67. Barber RD, Zhang L, Harnack M, Olson MV, Kaul R, Ingram-Smith C, Smith KS (July 2011). "Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis". Journal of Bacteriology. 193 (14): 3668–9. doi:10.1128/JB.05031-11. PMC   3133334 . PMID   21571998.
  68. Brambilla E, Djao OD, Daligault H, Lapidus A, Lucas S, Hammon N, et al. (October 2010). "Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847)". Standards in Genomic Sciences. 3 (2): 203–11. doi:10.4056/sigs.1183143 (inactive 31 January 2024). PMC   3035365 . PMID   21304750.{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  69. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, et al. (April 2002). "The genome of M. acetivorans reveals extensive metabolic and physiological diversity". Genome Research. 12 (4): 532–42. doi:10.1101/gr.223902. PMC   187521 . PMID   11932238.
  70. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, et al. (November 2006). "The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes". Journal of Bacteriology. 188 (22): 7922–31. doi:10.1128/JB.00810-06. PMC   1636319 . PMID   16980466.
  71. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, et al. (July 2002). "The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea". Journal of Molecular Microbiology and Biotechnology. 4 (4): 453–61. PMID   12125824.
  72. Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, et al. (April 2002). "The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens". Proceedings of the National Academy of Sciences of the United States of America. 99 (7): 4644–9. Bibcode:2002PNAS...99.4644S. doi: 10.1073/pnas.032671499 . PMC   123701 . PMID   11930014.
  73. Gaspin C, Cavaillé J, Erauso G, Bachellerie JP (April 2000). "Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes". Journal of Molecular Biology. 297 (4): 895–906. doi:10.1006/jmbi.2000.3593. PMID   10736225.
  74. Maeder DL, Weiss RB, Dunn DM, Cherry JL, González JM, DiRuggiero J, Robb FT (August 1999). "Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences". Genetics. 152 (4): 1299–305. doi:10.1093/genetics/152.4.1299. PMC   1460691 . PMID   10430560.
  75. Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, et al. (April 1998). "Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3". DNA Research. 5 (2): 55–76. doi: 10.1093/dnares/5.2.55 . PMID   9679194.
  76. Jun X, Lupeng L, Minjuan X, Oger P, Fengping W, Jebbar M, Xiang X (August 2011). "Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1". Journal of Bacteriology. 193 (16): 4297–8. doi:10.1128/JB.05345-11. PMC   3147706 . PMID   21705594.
  77. Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (March 2011). "Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP". Journal of Bacteriology. 193 (6): 1481–2. doi:10.1128/JB.01490-10. PMC   3067617 . PMID   21217005.
  78. Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, et al. (2009). "Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea". Genome Biology. 10 (6): R70. doi: 10.1186/gb-2009-10-6-r70 . PMC   2718504 . PMID   19558674.
  79. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (March 2005). "Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes". Genome Research. 15 (3): 352–63. doi:10.1101/gr.3003105. PMC   551561 . PMID   15710748.
  80. Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, et al. (November 2008). "The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism". Journal of Bacteriology. 190 (22): 7491–9. doi:10.1128/JB.00746-08. PMC   2576655 . PMID   18790866.
  81. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (July 2009). "Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis". Applied and Environmental Microbiology. 75 (13): 4580–8. Bibcode:2009ApEnM..75.4580M. doi:10.1128/AEM.00718-09. PMC   2704819 . PMID   19447963.
  82. Wang X, Gao Z, Xu X, Ruan L (October 2011). "Complete genome sequence of Thermococcus sp. strain 4557, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area". Journal of Bacteriology. 193 (19): 5544–5. doi:10.1128/JB.05851-11. PMC   3187469 . PMID   21914870.
  83. Oger P, Sokolova TG, Kozhevnikova DA, Chernyh NA, Bartlett DH, Bonch-Osmolovskaya EA, Lebedinsky AV (December 2011). "Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide". Journal of Bacteriology. 193 (24): 7019–20. doi:10.1128/JB.06259-11. PMC   3232831 . PMID   22123768.
  84. Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF (February 2007). "Genome dynamics in a natural archaeal population". Proceedings of the National Academy of Sciences of the United States of America. 104 (6): 1883–8. Bibcode:2007PNAS..104.1883A. doi: 10.1073/pnas.0604851104 . PMC   1794283 . PMID   17267615.
  85. Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, et al. (June 2004). "Genome sequence of Picrophilus torridus and its implications for life around pH 0". Proceedings of the National Academy of Sciences of the United States of America. 101 (24): 9091–6. Bibcode:2004PNAS..101.9091F. doi: 10.1073/pnas.0401356101 . PMC   428478 . PMID   15184674.
  86. Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, et al. (September 2000). "The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum". Nature. 407 (6803): 508–13. Bibcode:2000Natur.407..508R. doi: 10.1038/35035069 . PMID   11029001.
  87. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, et al. (December 2000). "Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium". Proceedings of the National Academy of Sciences of the United States of America. 97 (26): 14257–62. Bibcode:2000PNAS...9714257K. doi: 10.1073/pnas.97.26.14257 . PMC   18905 . PMID   11121031.
  88. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–7. Bibcode:2008PNAS..105.8102E. doi: 10.1073/pnas.0801980105 . PMC   2430366 . PMID   18535141.
  89. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, et al. (October 2003). "The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12984–8. Bibcode:2003PNAS..10012984W. doi: 10.1073/pnas.1735403100 . PMC   240731 . PMID   14566062.
  90. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. (November 2006). "Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum". Proceedings of the National Academy of Sciences of the United States of America. 103 (48): 18296–301. Bibcode:2006PNAS..10318296H. doi: 10.1073/pnas.0608549103 . PMC   1643844 . PMID   17114289.
  91. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (February 2011). "Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis". PLOS ONE. 6 (2): e16626. Bibcode:2011PLoSO...616626B. doi: 10.1371/journal.pone.0016626 . PMC   3043068 . PMID   21364937.
  92. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. (May 2010). "Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8818–23. Bibcode:2010PNAS..107.8818W. doi: 10.1073/pnas.0913533107 . PMC   2889351 . PMID   20421470.