Methanoculleus

Last updated

Methanoculleus
Viruses-13-01934-g001.webp
Methanoculleus bourgensis strain E02.3
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Euryarchaeota
Class: Methanomicrobia
Order: Methanomicrobiales
Family: Methanomicrobiaceae
Genus: Methanoculleus
Maestrojun et al. 1990
Type species
Methanoculleus bourgensis
corrig. (Ollivier et al. 1986) Maestrojun et al. 1990
Species

See text

Methanoculleus is a genus of microbes within the family Methanomicrobiaceae. [1] The species of the genus Methanoculleus live in marine environments brackish water, and are very common in bioreactors, landfills, and wastewater. Unlike other archaea, Methanoculleus and some species of related genera can use ethanol and some secondary alcohols as electron donors as they produce methane. This has implications as the production of methane as a greenhouse gas and consequences with respect to global climate change. [2]

Contents

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [3] and National Center for Biotechnology Information (NCBI). [1]

16S rRNA based LTP_06_2022 [4] [5] [6] 53 marker proteins based GTDB 09-RS220 [7] [8] [9]

M. taiwanensisWeng et al. 2015

M. receptaculi Cheng et al. 2008

M. palmolei Zellner et al. 1998

M. bourgensis corrig. (Ollivier et al. 1986) Maestrojun et al. 1990

M. sediminisChen et al. 2015

M. hydrogenitrophicus Tian, Wang & Dong 2010

M. thermophilus corrig. (Rivard & Smith 1982) Maestrojuan et al. 1990

M. horonobensisShimizu et al. 2013

M. chikugoensis Dianou et al. 2001

M. marisnigri (Romesser et al. 1981) Maestrojun et al. 1990

M. submarinus Mikucki et al. 2003

M. taiwanensis

M. thermophilus

M. bourgensis

"Ca. M. thermohydrogenotrophicus" corrig. Kougias et al. 2017

M. chikugoensis

M. horonobensis

M. sediminis

M. marisnigri

Species incertae sedis:

See also

Related Research Articles

Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.

Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.

In taxonomy, the Methanococcales are an order of the Methanococci.

In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.

In taxonomy, the Methanococcaceae are a family of the Methanococcales. These organisms produce methane from formate or through the reduction of carbon dioxide with hydrogen. They live in marshes and other coastal areas. Members of the genus Methanothermococcus have been found in deep-sea hydrothermal vents.

In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

Methanomicrobiaceae are a family of archaea in the order the Methanomicrobiales.

<span class="mw-page-title-main">Methanosarcinaceae</span> Family of archaea

In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales.

Methanospirillaceae are a family of microbes within Methanomicrobiales.

Methanogenium is a genus of archaeans in the family Methanomicrobiaceae. The type species is Methanogenium cariaci.

In taxonomy, Methanococcoides is a genus of the Methanosarcinaceae.

Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<i>Methanohalophilus</i> Genus of archaea

In taxonomy, Methanohalophilus is a genus of the Methanosarcinaceae.

In taxonomy, Methanolobus is a genus of methanogenic archaea within the Methanosarcinaceae. These organisms are strictly anaerobes and live exclusively through the production of methane, but the species within Methanolobus cannot use carbon dioxide with hydrogen, acetate or formate, only methyl compounds. The cells are irregular coccoid in form and approximately 1 μm in diameter. They do not form endospores. They are Gram negative and only some are motile, via a single flagellum. They are found in lake and ocean sediments that lack oxygen.

In taxonomy, Methanomethylovorans is a genus of microorganisms with the family Methanosarcinaceae. This genus was first described in 1999. The species within it generally live in freshwater environments, including rice paddies, freshwater sediments and contaminated soil. They produce methane from methanol, methylamines, dimethyl sulfide and methanethiol. With the exception of M. thermophila, which has an optimal growth temperature of 50 °C, these species are mesophiles and do not tend to grow at temperatures above 40 °C.

Methanobrevibacter is a genus of archaeans in the family Methanobacteriaceae. The species within Methanobrevibacter are strictly anaerobic archaea that produce methane, for the most part through the reduction of carbon dioxide via hydrogen. Most species live in the intestines of larger organisms, such as termites and are responsible for the large quantities of greenhouse gases that they produce.

<i>Methanothermobacter</i> Genus of archaea

Methanothermobacter is a genus of archaeans in the family Methanobacteriaceae. The species within this genus are thermophilic and grow best at temperatures between 55 °C and 65 °C. They are methanogens; they use carbon dioxide and hydrogen as substrates to produce methane for energy.

In taxonomy, Methanocorpusculum is a genus of microbes within the family Methanocorpusculaceae. The species within Methanocorpusculum were first isolated from biodisgester wastewater and activated sludge from anaerobic digestors. In nature, they live in freshwater environments. Unlike most other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

In taxonomy, Methanofollis is a genus of the Methanomicrobiaceae.

Methanocalculus is a genus of the Methanomicrobiales, and is known to include methanogens.

References

  1. 1 2 Sayers; et al. "Methanoculleus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-06-05.
  2. "JGI Genome Portal, Methanoculleus". U.S. Department of Energy, Office of Science. Archived from the original on 2016-08-16. Retrieved 2016-07-24.
  3. J.P. Euzéby. "Methanoculleus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-11-17.
  4. "The LTP" . Retrieved 10 May 2023.
  5. "LTP_all tree in newick format" . Retrieved 10 May 2023.
  6. "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
  7. "GTDB release 09-RS220". Genome Taxonomy Database . Retrieved 10 May 2024.
  8. "ar53_r220.sp_label". Genome Taxonomy Database . Retrieved 10 May 2024.
  9. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2024.

Further reading