List of sequenced plant genomes

Last updated

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

Contents

See also List of sequenced algae genomes.

Bryophytes

Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Anthoceros angustus Bryophytes Early diverging land plant
Ceratodon purpureus Bryophytes Early diverging land plant
Fontinalis antipyretica (greater water-moss) Bryophytes Aquatic moss385.2 Mbp16,538 BGI 2020 [1] BGISEQ-500 & 10X, scaffold N50 45.8 Kbp
Marchantia polymorpha Bryophytes Early diverging land plant225.8 Mb19,1382017 [2]
Physcomitrella patens ssp. patens str. Gransden 2004 Bryophytes Early diverging land plant462.3 Mbp35,9382008 [3]
Pleurozium schreberi (feather moss) Bryophytes Ubiquitous moss species318 Mbp15,9922019 [4]

Vascular plants

Lycophytes

Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Isoetes sinensis Lycopodiophyta First aquatic Quillwort2.131 GB57,3032023 [5] Scaffold N50 = 86 Mb
Selaginella moellendorffii Lycopodiophyta Model organism106 Mb22,2852011 [6] [7] scaffold N50 = 1.7 Mb
Selaginella lepidophylla Lycopodiophyta Desiccation tolerance122 Mb27,2042018 [8] contig N50 = 163 kb

Ferns

Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Azolla filiculoides Polypodiophyta Fern0.75 Gb20,2012018 [9]
Salvinia cucullata Polypodiophyta Fern0.26 Gb19,9142018 [9]
Ceratopteris richardii Polypodiophyta Model organism7.5 Gb36,8572019 (v1.1), [10] 2021 (v2.1) [11] Partial assembly consisting of 7.5 Gb/11.2 Gb, arranged in 39 chromosomes
Alsophila spinulosa Polypodiophyta Tree Fern6.23 Gb67,8312022 [12]

Gymnosperms

Organism strainDivisionRelevanceGenome sizeNumber of genes predictedNo of chromosomesOrganizationYear of completionAssembly status
Cycas panzhihuaensis (Dukou sago palm) Cycadophyta Rare and vulnerable species of cycad10.5 Gb2022 [13]
Picea abies (Norway spruce) Pinales Timber, tonewood, ornamental such as Christmas tree 19.6 Gb26,359 [14] 12Umeå Plant Science Centre / SciLifeLab, Sweden2013 [15]
Picea glauca (White spruce) Pinales Timber, Pulp20.8 Gb14,462 [14] 12Institutional Collaboration2013 [16] [17]
Pinus taeda (Loblolly pine) Pinales Timber20.15 Gb9,024 [14] 122014 [18] [19] [20] N50 scaffold size: 66.9 kbp
Pinus lambertiana (Sugar pine) Pinales Timber; with the largest genomes among the pines;

the largest pine species

31 Gb13,936122016 [14] 61.5X sequence coverage, platforms used:

Hiseq 2000, Hiseq 2500, GAIIx, MiSeq

Ginkgo biloba Ginkgoales 11.75 Gb41,8402016 [21] N50 scaffold size: 48.2 kbp
Pseudotsuga menziesii Pinales 16 Gb54,830132017 [22] N50 scaffold size : 340.7 kbp
Gnetum monatum Gnetales 4.07 Gb27,4912018 [23]
Larix sibirica Pinales 12.34 Gbp2019 [24] scaffold N50 of 6440 bp
Abies alba Pinales 18.16 Gb94,2052019 [25] scaffold N50 of 14,051 bp

Angiosperms

Amborellales

Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Amborella trichopoda Amborellaceae Basal angiosperm2013 [26] [27]

Chlorantales

Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Chloranthus spicatus (Thunb.) Makino, [28] (Pearl Orchid)Chlorantaceae2021 [29] saffold N50 of 191.37 Mb

Magnoliales

Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Annona muricata Annonaceae Commercially grown fruit, medicinal applications799.11 Mb23,375 Institute for Biodiversity and Environmental Research (UBD)

Alliance for Conservation Tree Genomics

Biodiversity Genomics Team

2021 [30] PacBio and Illumina short‐reads, in combination with 10× Genomics and Bionano data (v1). A total of 949 scaffolds assembled to a final size of 656.77 Mb, with a scaffold N50 of 3.43 Mb (v1), and then further improved to seven pseudo‐chromosomes using Hi‐C sequencing data (v2; scaffold N50: 93.2 Mb, total size in chromosomes: 639.6 Mb).
Salix arbutifolia
(syn. Chosenia arbutifolia)
Salicaceae Seriously endangered relic species338.93 Mb33,2292022 [31] Contig N50 of 1.68 Mb
Cinnamomum kanehirae (Stout camphor tree) Lauraceae 730.7 Mb2019 [32]

Eudicots

Proteales
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Macadamia integrifolia HAES 741 (Macadamia nut) Proteaceae Commercially grown nut745 Mb34,2742020 [33] N50 413 kb
Macadamia jansenii Proteaceae Rare relative of macademia nut750 Mbp2020 [34] Compared Nanopore, Illumina and BGI stLRF data
Nelumbo nucifera (sacred lotus) Nelumbonaceae Basal eudicot929 Mbp2013 [35] contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp
Ranunculales
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Aquilegia coerulea Ranunculaceae Basal eudicotUnpublished [36]
Trochodendrales
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Trochodendron aralioides (Wheel tree) Trochodendrales Basal eudicot having secondary xylem without vessel elements1.614 Gb35,328 Guangxi University 2019 [37] 19 scaffolds corresponding to 19 chromosomes
Caryophyllales
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Beta vulgaris (sugar beet) Chenopodiaceae Crop plant714–758 Mbp27,4212013 [38]
Chenopodium quinoa Chenopodiaceae Crop plant1.39–1.50 Gb44,7762017 [39] 3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds [39]
Amaranthus hypocondriacus Amaranthaceae Crop plant403.9 Mb23,8472016 [40] 16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively. [41]
Carnegiea gigantea Cactaceae Wild plant1.40 Gb28,2922017 [42] 57,409 scaffolds, scaffold N50 of 61.5 kb [42]
Nepenthes mirabilis Nepenthes Carnivorous Plant691 Mb42,9612023 [43] 159,555 contigs/scaffolds and N50 of 10,307 bp
Suaeda aralocaspica Amaranthaceae Performs complete C4 photosynthesis within individual cells (SCC4)467 Mb29,604ABLife Inc.2019 [44] 4,033 scaffolds, scaffold N50 length of 1.83 Mb
Simmondsia chinensis (jojoba) Simmondsiaceae Oilseed Crop887 Mb23,4902020 [45] 994 scaffolds, scaffold N50 length of 5.2 Mb

Drosera capensis

Droseraceae Carnivorous Plant263.79 Mb2016 [46] 12,713 scaffolds [46]
Tamarix chinensis (Chinese tamarisk) Tamaricaceae Margin tree1.32 Gb2023 [47]
Rosids
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedNo of chromosomesOrganizationYear of completionAssembly status
Bretschneidera sinensis Akaniaceae endangered relic tree species1.21 Gb45,8392022 [48]
Sclerocarya birrea

(Marula)

Anacardiaceae Used for food18,3972018 [49] [50]
Begonia masoniana (Iron cross begonia) Begoniaceae Flower799.83 Mb2022 [51]
Begonia peltatifolia (Rex begonia) Begoniaceae Flower331.75 Mb2022 [51]
Betula pendula (silver birch) Betulaceae Boreal forest tree, model for forest biotechnology435 Mbp [52] 28,39914University of Helsinki2017 [52] 454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced.
Betula platyphylla (Japanese white birch) Betulaceae Pioneer hardwood tree species430 Mbp2021 [53] contig N50 = 751 kbp
Betula nana (dwarf birch) Betulaceae Arctic shrub450 Mbp QMUL/SBCS 2013 [54]
Corylus heterophylla Fisch (Asian hazel) Betulaceae Nut tree used for food370.75 Mbp27,591112021 [55] Nanopore/Hi-C chromosome scale. Contig N50 and scaffold N50 sizes of 2.07 and 31.33  Mb, respectively
Corylus mandshurica Betulaceae Hazel used for breeding367.67 Mb28,409112021 [56]
Aethionema arabicum Brassicaceae Comparative analysis of crucifer genomes2013 [57]
Arabidopsis lyrata ssp. lyrata strain MN47 Brassicaceae Model plant206.7 Mbp32,670 [58] 82011 [58] 8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers
Arabidopsis thaliana Ecotype:Columbia Brassicaceae Model plant135 Mbp27,655 [59] 5AGI2000 [60]
Barbarea vulgaris

G-type

Brassicaceae Model plant for specialised metabolites and plant defenses167.7 Mbp25,35082017 [61] 66.5 X coverage with Illumina GA II technology
Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42 Brassicaceae Assorted crops and model organism485 Mbp41,174 (has undergone genome triplication)10The Brassica rapa Genome Sequencing Project Consortium2011 [62] 72X coverage of paired short read sequences generated by Illumina GA II technology
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar 'Darmor-bzh' Brassicaceae Crops1130 Mbp101,04019Institutional Collaboration2014 [63] 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence.
Capsella rubella Brassicaceae Close relative of Arabidopsis thaliana130 Mbp26,521JGI2013? [64] 2013 [65]
Cardamine hirsuta (hairy bittercress) strain 'Oxford' Brassicaceae A model system for studies in evolution of plant development198 Mbp29,4588Max Planck Institute for Plant Breeding Research, Köln, Germany2016 [66] Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads).
Eruca sativa (salad rocket) Brassicaceae Used for food851 Mbp45,438 University of Reading 2020 [67] Illumina MiSeq and HiSeq2500. PCR free paired end and long mate pair sequencing and assembly. Illumina HiSeq transcriptome sequencing (125/150 bp paired end reads).
Erysimum cheiranthoides (wormseed wallflower) strain 'Elbtalaue' Brassicaceae Model plant for studying defensive chemistry, including cardiac glycosides 175 Mbp29,9478Boyce Thompson Institute, Ithaca, NY2020 [68] [69] 39.5 Gb PacBio sequences (average length 10,603 bp), one lane Illumina MiSeq sequencing (2 x 250 bp paired end), Phase Genomics Hi-C scaffolding, PacBio and Illumina transcriptome sequencing
Eutrema salsugineum Brassicaceae A relative of arabidopsis with high salt tolerance240 Mbp26,351JGI2013 [70]
Eutrema parvulum Brassicaceae Comparative analysis of crucifer genomes2013 [57]
Leavenworthia alabamica Brassicaceae Comparative analysis of crucifer genomes2013 [57]
Sisymbrium irio Brassicaceae Comparative analysis of crucifer genomes2013 [57]
Thellungiella parvula Brassicaceae A relative of arabidopsis with high salt tolerance2011 [71]
Cannabis sativa (hemp) Cannabaceae Hemp and marijuana productionca 820 Mbp30,074 based on transcriptome assembly and clustering2011 [72] Illumina/454

scaffold N50 16.2 Kbp

Capparis spinosa var. herbacea (Caper) Capparaceae Crop274.53 Mb21,5772022 [73] contig N50 9.36 Mb
Carica papaya (papaya) Caricaceae Fruit crop372 Mbp28,6292008 [74] contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Casuarina equisetifolia

(Australian Pine)

Casuarinaceae bonsai subject300 Mbp29,8272018 [75]
Tripterygium wilfordii (Lei gong teng) Celastraceae Chinese medicine crop340.12 Mbp31,5932021 [76] Contig N50 3.09 Mbp
Cleome gynandra

(African cabbage)

Cleomaceae C4 leafy vegetable and medicinal plant740 Mb30,9332023 [77] N50 of 42 Mb
Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoe Crassulaceae Molecular genetic model for obligate CAM species in the eudicots256 Mbp30,964342017 [78] ~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform.
Rhodiola crenulata (Tibetan medicinal herb) Crassulaceae Uses for medicine and food344.5 Mb35,5172017 [79]
Citrullus lanatus (watermelon) Cucurbitaceae Vegetable cropca 425 Mbp23,440 BGI 2012 [80] Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92 Cucurbitaceae Vegetable crop450 Mbp27,4272012 [81] 454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 Cucurbitaceae Vegetable crop350 Mbp (Kmer depth) 367 Mbp (flow cytometry)26,6822009 [82] contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Cucurbita argyrosperma subsp. argyrosperma

(Silver-seed gourd)

Cucurbitaceae Seed and fruit crop228.8 Mbp27,99820 National Autonomous University of Mexico 2019, [83] updated in 2021contig N50 447 kbp

scaffold N50 11.6 Mbp

total coverage: 120x Illumina (HiSeq2000 and MiSeq) + 31x PacBio RSII

Cucurbita argyrosperma subsp. sororia

(wild gourd)

Cucurbitaceae Wild relative of the silver-seed gourd255.2 Mbp30,59220 National Autonomous University of Mexico 2021 [84] contig N50 1.2 Mbp

scaffold N50 12.1 Mbp

total coverage: 213x Illumina HiSeq4000 + 75.4x PacBio Sequel

Siraitia grosvenorii

(Monk fruit)

Cucurbitaceae Chinese medicine/sweetener456.5 Mbp30,565Anhui Agricultural University2018 [85]
Hippophae rhamnoides (sea-buckthorn) Elaeagnaceae used in food and cosmetics730 Mbp30,8122022 [86]
Hevea brasiliensis (rubber tree) Euphorbiaceae the most economically important member of the genus Hevea 2013 [87]
Jatropha curcas Palawan Euphorbiaceae bio-diesel crop2011 [88]
Manihot esculenta (Cassava) Euphorbiaceae Humanitarian importance~760 Mb30,666JGI2012 [89]
Ricinus communis (Castor bean) Euphorbiaceae Oilseed crop320 Mbp31,237JCVI2010 [90] Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Ricinus communis L. (Wild Castor) Euphorbiaceae one of the most important oil crops worldwide~318.13 Mb30,066National Key R&D Program of China, the National Natural Science Foundation of China, the Guangdong Basic and Applied Basic Research Foundation, China, and the Shenzhen Science and Technology Program, China2021 [91] genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb
Ammopiptanthus nanus Fabaceae Only genus of evergreen broadleaf shrub889 Mb37,1882018 [92]
Cajanus cajan (Pigeon pea) var. Asha Fabaceae Model legume2012 [93] [94]
Arachis duranensis (A genome diploid wild peanut) accession V14167 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop2016 [95] Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Amphicarpaea edgeworthii (Chinese hog-peanut) Fabaceae produces both aerial and subterranean fruits299-Mb27 899Taishan Scholar Program, National Natural Science Foundation of China, the Innovation Program of SAAS2021 [96]
Arachis ipaensis (B genome diploid wild peanut) accession K30076 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop2016 [95] Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp
Cicer arietinum (chickpea) Fabaceae filling2013 [97]
Cicer arietinum L. (chickpea) Fabaceae 2013 [98]
Dalbergia odorifera (fragrant rosewood) Fabaceae Wood product (heartwood) and folk medicine653 Mb30,31010Chinese Academy of Forestry2020 [99] Contig N50: 5.92Mb

Scaffold N50: 56.1 6Mb

Faidherbia albida

(Apple-Ring Acacia)

Fabaceae Importante in the Sahel for raising bees28,9792018 [100] [49]
Glycine max (soybean) var. Williams 82 Fabaceae Protein and oil crop1115 Mbp46,4302010 [101] Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lablab purpureus

(Hyacinth Bean)

Fabaceae Crop for human consumption20,9462018 [49] [102]
Lotus japonicus (Bird's-foot Trefoil) Fabaceae Model legume2008 [103]
Medicago truncatula (Barrel Medic) Fabaceae Model legume2011 [104]
Melilotus officinalis (sweet yellow clover) Fabaceae Forage and Chinese medicine976.27 Mbp50,0222023 [105]
Phaseolus vulgaris (common bean) Fabaceae Model bean520 Mbp31,638JGI2013? [106]
Prosopis cineraria (Ghaf) Fabaceae Desert mimosoid legume691 Mbp55,3252023 [107]
Vicia faba L. (Faba bean) Fabaceae Nature (journal) 2023 [108]
Vicia villosa (hairy vetch) Fabaceae Forage and cover crop2.03 Gbp2023 [109]
Vigna hirtella (Wild vigna) Fabaceae Wild legume474.1 Mbp2023 [108] [110]
Vigna reflexo-pilosa (Créole bean) Fabaceae Tetraploid wild legume998.7 Mbp2023 [111] [112]
Vigna subterranea

(Bambara Groundnut)

Fabaceae similar to peanuts31,7072018 [113] [49]
Vigna trinervia Fabaceae 498,7 Mbp2023 [111]
Trifolium pratense L. (Red clover) Fabaceae often used to relieve symptoms of menopause, high cholesterol, and osteoporosis. [114] 2022 [115]
Vicia sativa L. (Common vetch) Fabaceae grain to livestock2022 [116]
Macrotyloma uniflorum (Horse gram) Fabaceae horsefeed2021 [117]
Castanea mollissima (Chinese chestnut) Fagaceae cultivated nut785.53 Mb36,479Beijing University of Agriculture2019 [118] Illumina: ~42.7×

PacBio: ~87× contig N50: 944,000bp

Quercus robur (European oak) Fagaceae Pedunculate oak,

large diversity, somatic mutation studies

736 Mb25,80812 Biogeco lab, Inrae, University of Bordeaux 2018 [119] https://www.oakgenome.fr/?page_id=587
Carya illinoinensis

Pecan

Junglandaceae snacks in various recipes651.31 Mb2019 [120]
Juglans mandshurica Maxim. (Manchurian walnut) Junglandaceae cultivated nut548.7 Mb2022 [121]
Juglans regia (Persian walnut) Junglandaceae cultivated nut540 MbChinese Academy of Forestry2020 [122]
Juglans sigillata (Iron walnut) Junglandaceae cultivated nut536.50 Mb Nanjing Forestry University 2020 [123] Illumina+Nanopore+bionano

scaffold N50: 16.43 Mb, contig N50: 4.34 Mb

Linum usitatissimum (flax) Linaceae Crop~350 Mbp43,384 BGI et al.2012 [124]
Bombax ceiba

(red silk cotton tree)

Malvaceae capsules with white fibre like cotton895 Mb2018 [125]
Durio zibethinus (Durian) Malvaceae Tropical fruit tree~738 Mbp2017 [126]
Gossypium raimondii Malvaceae One of the putative progenitor species of tetraploid cotton2013? [127]
Theobroma cacao (cocoa tree) Malvaceae Flavouring crop2010 [128] [129]
Theobroma cacao (cocoa tree) cv. Matina 1-6 Malvaceae Most widely cultivated cacao type2013 [130]
Theobroma cacao (200 accessions) Malvaceae domestication history of cacao2018 [131]
Azadirachta indica (neem) Meliaceae Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine364 Mbp~20000 GANIT Labs Archived 2014-01-08 at the Wayback Machine 2012 [132] and 2011 [133] Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Artocarpus nanchuanensis (Bayberry) Moraceae Extremely endangered fruit tree769.44 Mbp39,596282022 [134]
Moringa oleifera

(Horseradish Tree)

Moringaceae traditional herbal medicine18,4512018 [135] [49]
Eucalyptus caleyi (Caley's ironbark) Myrtaceae 589.32 Mb2024 [136]
Eucalyptus urophylla (Timor white gum) Myrtaceae Fibre and timber crop544.5 Mb2023 [137]
Eucalyptus grandis (Rose gum) Myrtaceae Fibre and timber crop691.43 Mb2011 [138] [137]
Eucalyptus lansdowneana (crimson mallee) Myrtaceae 633.52 Mb2024 [136]
Eucalyptus marginata (Jarrah) Myrtaceae 512.89 Mb2024 [136]
Eucalyptus pauciflora (Snow gum) Myrtaceae Fibre and timber crop594.87 Mb ANU 2020 [139] Nanopore + Illumina; contig N50: 3.23 Mb
Melaleuca alternifolia (tea tree) Myrtaceae terpene-rich essential oil with therapeutic and cosmetic uses around the world362 Mb37,226 Gigabyte, NCBI GenBank, GigaScience 2021 [140] 3128 scaffolds with a total length of 362 Mb (N50 = 1.9 Mb)
Averrhoa carambola (Star Fruit) Oxalidales fruit crop335.49 Mb2020 [141]
Carya cathayensis (Chinese hickory) Rosaceae fruit crop706.43 Mb2019 [120]
Eriobotrya japonica (Loquat) Rosaceae Fruit tree760.1 Mb45,743Shanghai Academy of Agricultural Sciences2020 [142] Illumina+Nanopore+Hi-C

17 chromosomes, scaffold N50: 39.7 Mb

Fragaria vesca (wild strawberry) Rosaceae Fruit crop240 Mbp34,8092011 [143] scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Gillenia trifoliata Rosaceae Apple Tribe320.17±4.22 Mb26,166182021 [144] Number of scaffolds(>2kb): 789, scaffold N50: 30,093,771 bp, Contig N50 (bp): 828,523
Malus domestica (apple) "Golden Delicious" Rosaceae Fruit crop~742.3 Mbp57,3862010 [145] contig N50 13.4 (kbp??)

scaffold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond) Rosaceae Fruit crop2013? [146]
Prunus avium (sweet cherry) cv. Stella Rosaceae Fruit crop2013? [146]
Prunus mume (Chinese plum or Japanese apricot) Rosaceae Fruit crop2012 [147]
Prunus persica (peach) Rosaceae Fruit crop265 Mbp27,8522013 [148] Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Prunus salicina (Japanese plum) Rosaceae Fruit crop284.2 Mbp24,44882020 [149] PacBio/Hi-C, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb.
Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli Rosaceae Fruit crop2012 [150]
Pyrus communis (European pear) cv. Doyenne du Comice Rosaceae Fruit crop2013? [146]
Rosa roxburghii (Chestnut Rose) Rosaceae Fruit crop504 Mbp2023 [151]
Rosa sterilis Rosaceae Fruit crop981.2 Mb2023 [152]
Rubus occidentalis

(Black raspberry)

Rosaceae Fruit crop290 Mbp2018 [153]
Citrus clementina (Clementine) Rutaceae Fruit crop2013? [154]
Citrus sinensis (Sweet orange) Rutaceae Fruit crop2013?, [154] 2013 [155]
Clausena lansium (Wampee)RutaceaeFruit crop2021 [156]
Populus trichocarpa (poplar) Salicaceae Carbon sequestration, model tree, timber510 Mbp (cytogenetic) 485 Mbp (coverage)73,013 [Phytozome]2006 [157] Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Populus pruinosa

(desert tree)

Salicaceae farming and ranching479.3 Mbp35,1312017 [158]
Acer truncatum (purpleblow maple) Sapindaceae Tree producing nervonic acid633.28 Mb28,4382020 [159] contig N50 = 773.17 Kb; scaffold N50 = 46.36 Mb
Acer yangbiense Sapindaceae Plant species with extremely small populations110 Gb28,320132019 [160] scaffold N50 = 45 Mb
Dimocarpus longan (Longan) Sapindaceae Fruit crop471.88 Mb2017 [161]
Xanthoceras sorbifolium Bunge (Yellowhorn) Sapindaceae Fruit Crop504.2 Mb24,6722019 [162] [163]
Aquilaria sinensis (Agarwood) Thymelaeaceae Fragrant wood726.5 Mb29,2032020 [164] Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb
Vitis vinifera (grape) genotype PN40024 Vitaceae fruit crop2007 [165]
Asterids
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Asclepias syriaca , (common milkweed) Apocynaceae Exudes milky latex420 Mbp14,474 Oregon State University 2019 [166] 80.4× depth

N50 = 3,415 bp

Erigeron breviscapus (Chinese herbal fleabane) Asteraceae Chinese medicine37,5052017 [167]
Helianthus annuus (sunflower) Asteraceae Oil crop3.6 Gbb52,232 INRA and The Sunflower Genome Database [168] 2017 [169] N50 contig: 13.7 kb
Lactuca sativa (lettuce) Asteraceae Vegetable crop2.5 Gbb38,9192017 [170] N50 contig: 12 kb; N50 scaffold: 476 kb
Handroanthus impetiginosus, Bignoniaceae

(Pink Ipê)

Bignoniaceae Common tree503.7 Mb31,6682017 [171]
Diospyros oleifera Cheng (Oil persimmon) Ebenaceae Fruit tree849.53 Mb28,580 Zhejiang University & Chinese Academy of Forestry2019 [172] & 2020 [173] Two genomes both chromosome scale & assigned to 15 pseudochromosomes
Salvia miltiorrhiza Bunge

(Chinese red sage)

Lamiaceae TCM treatment for COPD641 Mb34,5982015 [174]
Callicarpa americana (American beautyberry) Lamiaceae Ornamental shrub and insect-repellent506 Mb32,164 Michigan State University 2020 [175] 17 pseudomolecules Contig N50: 7.5Mb Scaffold N50: and 29.0 Mb
Mentha x piperita (Peppermint) Lamiaceae Oil crop353 Mb35,597 Oregon State University 2017 [176]
Tectona grandis

(Teak)

Lamiaceae Durability and water resistance31,1682019 [177]
Utricularia gibba (humped bladderwort) Lentibulariaceae model system for studying genome size evolution; a carnivorous plant81.87 Mb28,494LANGEBIO, CINVESTAV2013 [178] Scaffold N50: 80.839 Kb
Camptotheca acuminata Decne

(Chinese happy tree)

Nyssaceae chemical drugs for cancer treatment403 Mb31,8252017 [179]
Davidia involucrata Baill (Dove tree) Nyssaceae Living fossil1,169 Mb42,5542020 [180]
Mimulus guttatus Phrymaceae model system for studying ecological and evolutionary geneticsca 430 Mbp26,718JGI2013? [181] Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Primula vulgaris (Common primrose) Primulaceae Used for cooking474 Mb2018 [182]
Cinchona pubescens Vahl. (Fever tree) Rubiaceae Anti-malarial1.1 Gb2022 [183]
Solanum lycopersicum (tomato) cv. Heinz 1706 Solanaceae Food cropca 900 Mbp34,727SGN2011 [184] 2012 [185] Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum aethiopicum (Ethiopian eggplant) Solanaceae Food crop1.02 Gbp34,906 BGI 2019 [186] Illumina

scaffold N50: 516,100bp

contig N50: 25,200 bp

~109× coverage

Solanum pimpinellifolium (Currant Tomato) Solanaceae closest wild relative to tomato2012 [185] Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (Potato) Solanaceae Food crop726 Mbp [187] 39,031Potato Genome Sequencing Consortium (PGSC)2011 [188] [189] Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade) Solanaceae Wild potato relative838 Mbp kmer (840 Mbp)37,662UNINA, UMN, UNIVR, Sequentia Biotech, CGR2015 [190] Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Cuscuta campestris

(field dodder)

Solanaceae model system for parasitic plants 556 Mbp kmer (581 Mbp)44,303 RWTH Aachen University, Research Center Jülich, University of Tromsø, Helmholtz Zentrum München, Technical University Munich, University of Vienna 2018 [191] scaffold N50 = 1.38 Mbp
Cuscuta australis (Southern dodder) Solanaceae model system for parasitic plants 265 Mbp

kmer (273 Mbp)

19,671 Kunming Institute of Botany, Chinese Academy of Sciences 2018 [192] scaffold N50 = 5.95 Mbp

contig N50 = 3.63 Mbp

Nicotiana benthamiana Solanaceae Close relative of tobaccoca 3 Gbp2012 [193] Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant) Solanaceae model system for studies of terpenoid production2.636 GbpPhilip Morris International2013 [194] 94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformis Solanaceae Tobacco progenitor2.682 GbPhilip Morris International2013 [194] 146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

Solanaceae Food crop~3.48 Gbp(a) 34,903

(b) 35,336

(a) 2014 [195]

(b) 2014 [196]

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin) Solanaceae Progenitor of cultivated pepper~3.48 Gbp34,4762014 [196] N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia hybrida Solanaceae Economically important flower2011 [197]

Monocots

Grasses
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Setaria italica (Foxtail millet) Poaceae Model of C4 metabolism2012 [198]
Aegilops tauschii (Tausch's goatgrass) Poaceae bread wheat D-genome progenitorca 4.36 Gb39,6222017 [199] pseudomolecule assembly
Bothriochloa decipiens

(Australian bluestem grass)

Poaceae BCD clade and polyploid1,218.22 Mb60,6522023 [200] Scaffold N50: 42.637 Mb
Brachypodium distachyon (purple false brome) Poaceae Model monocot2010 [201]
Coix lacryma-jobi L. (Job's tears) Poaceae Crop & used in medicine & ornamentation1.619 Gb39,6292019 [202]
Dichanthelium oligosanthes (Heller's rosette grass) Poaceae C3 grass closely related to C4 species960 Mb DDPSC 2016 [203]
Digitaria exilis (white fonio) Poaceae African orphan crop761 Mb ICRISAT, UC Davis 2021 [204] 3,329 contigs. N50: 1.73 Mb; L50, 126)
Eragrostis curvula Poaceae good for livestock602 Mb56,4692019 [205]
Hordeum vulgare (barley) Poaceae Model of ecological adoptionIBSC2012, [206] 2017 [207]
Oryza brachyantha (wild rice) Poaceae Disease resistant wild relative of rice2013 [208]
Oryza glaberrima (African rice) var CG14 Poaceae West-African species of rice2010 [209]
Oryza rufipogon (red rice) Poaceae Ancestor to Oryza sativa 406 Mb37,071SIBS2012 [210] Illumina HiSeq2000

100x coverage

Oryza sativa (long grain rice) ssp indica Poaceae Crop and model cereal430 Mb [211] International Rice Genome Sequencing Project (IRGSP)2002 [212]
Oryza sativa (Short grain rice) ssp japonica Poaceae Crop and model cereal430 MbInternational Rice Genome Sequencing Project (IRGSP)2002 [213]
Panicum virgatum (switchgrass) Poaceae biofuel2013? [214]
Poa annua (annual bluegrass) Poaceae weed3.56 Gb76,420 USDA ARS, Forage and Range Research2023 [215] unphased (haploid) pseudomolecules
Poa infirma (weak bluegrass) Poaceae diploid progenitor to Poa annua 2.25 Gb39,420 Penn State University 2023 [216] unphased (haploid) pseudomolecules
Poa pratensis (Kentucky bluegrass) Poaceae Lawn grass6.09 Gbp2023 [217] Scaffold N50: 65.1 Mbp
Poa supina (supine bluegrass) Poaceae diploid progenitor to Poa annua 1.27 Gb37,935 Penn State University 2023 [216] unphased (haploid) pseudomolecules
Phyllostachys edulis (moso bamboo) Poaceae Bamboo textile industry603.3 Mb25,2252013 [218] 2018 [219]
Sorghum bicolor genotype BTx623 Poaceae Cropca 730 Mb34,4962009 [220] contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat) Poaceae 20% of global nutrition14.5 Gb107,891IWGSC2018 [221] pseudomolecule assembly
Triticum urartu Poaceae Bread wheat A-genome progenitorca 4.94 Gb BGI 2013 [222] Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73 Poaceae Cereal crop2.3 Gb39,656 [223] 2009 [224] contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Pennisetum glaucum (pearl millet) Poaceae Sub-Saharan and Sahelian millet species~1,79 Gb38,5792017 [225] WGS and bacterial artificial chromosome (BAC) sequencing
Other non-grasses
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedNo of chromosomesOrganizationYear of completionAssembly status
Ananas bracteatus accession CB5 Bromeliaceae Wild pineapple relative382 Mbp27,024252015 [226] 100× coverage using Illumina paired-end reads of libraries with different insert sizes.
Ananas comosus (L.) Merr. (Pineapple), varieties F153 and MD2 Bromeliaceae The most economically valuable crop possessing crassulacean acid metabolism (CAM)382 Mb27,024252015 [226] 400× Illumina reads, 2× Moleculo synthetic long reads, 1× 454 reads, 5× PacBio single-molecule long reads and 9,400 BACs.
Ottelia alismoides (Duck lettuce) Hydrocharitaceae Aquatic plant6.45Gb2024 [227] 11,923 scaffolds/contigs and an N50 of 790,733 bp
Pontederia crassipes (Water hyacinth) Pontederiaceae Aquatic plant1.22 Gb865,2992024 [228] Scaffold N50 = 77.2Mb
Musa acuminata (Banana) Musaceae A-genome of modern banana cultivars523 Mbp36,5422012 [229] N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) (PKW) Musaceae B-genome of modern banana cultivars438 Mbp36,6382013 [230] N50 contig: 7.9 kb
Musa balbisiana (DH-PKW) Musaceae B-genome (B-subgenome to cultivated allotriploid bananas)430 Mb35,14811 CATAS, BGI, CIRAD 2019 [231] N50 contig: 1.83 Mb
Musa beccarii (Red ornamental banana) Musaceae Ornamental, aids understanding Musaceae genomes evolution567 Mb39,11292023 [232]
Calamus simplicifolius
Arecaceae native to tropical and subtropical regions1.98 Gb51,2352018 [233]
Cocos nucifera (Coconut palm) Arecaceae used in food and cosmetics~2.42 Gb2017 [234]
Daemonorops jenkinsiana Arecaceae native to tropical and subtropical regions.1.61 Gb52,3422018 [233]
Phoenix dactylifera (Date palm) Arecaceae Woody crop in arid regions658 Mbp28,8002011 [235] N50 contig: 6.4 kb
Elaeis guineensis (African oil palm) Arecaceae Oil-bearing crop~1800 Mbp34,8002013 [236] N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed) Araceae Aquatic plant158 Mbp19,6232014 [237] N50 scaffold: 3.76 Mb
Dendrobium hybrid cultivar ‘Emma White’ Orchidaceae Commercialised hybrid orchid678 Mbp2022 [238]
Phalaenopsis equestris (Schauer) Rchb.f. (Moth orchid) Orchidaceae Breeding parent of many modern moth orchid cultivars and hybrids.

Plant with crassulacean acid metabolism (CAM).

1600 Mbp29,4312014 [239] N50 scaffold: 359,115 kb
Iris pallida Lam. (Dalmatian Iris) Iridaceae Ornamental and, commercial interest in secondary metabolites10.04 Gbp63,944 Novartis 2023 [240] Scaffold N50: 14.34 Mbp
Iris sibirica (Siberian Ibis) Iridaceae Ornamental flower2023 [241]
Iris virginica (Southern Blue Flag Iris) Iridaceae Ornamental flower2023 [241]

Press releases announcing sequencing

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed peer-review journal with DOI.

See also

Related Research Articles

<span class="mw-page-title-main">Genome</span> All genetic material of an organism

In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

<span class="mw-page-title-main">Comparative genomics</span> Field of biological research

Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.

<span class="mw-page-title-main">CRISPR</span> Family of DNA sequence found in prokaryotic organisms

CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. Each sequence within an individual prokaryotic cell is derived from a DNA fragment of a bacteriophage that had previously infected the prokaryote or one of its ancestors. These sequences are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral defense system of prokaryotes and provide a form of heritable, acquired immunity. CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.

<span class="mw-page-title-main">Prasinophyte</span> Class of algae

The prasinophytes are a group of unicellular green algae. Prasinophytes mainly include marine planktonic species, as well as some freshwater representatives. The prasinophytes are morphologically diverse, including flagellates with one to eight flagella and non-motile (coccoid) unicells. The cells of many species are covered with organic body scales; others are naked. Well studied genera include Ostreococcus, considered to be the smallest free-living eukaryote, and Micromonas, both of which are found in marine waters worldwide. Prasinophytes have simple cellular structures, containing a single chloroplast and a single mitochondrion. The genomes are relatively small compared to other eukaryotes . At least one species, the Antarctic form Pyramimonas gelidicola, is capable of phagocytosis and is therefore a mixotrophic algae.

<span class="mw-page-title-main">Neoaves</span> Clade of birds

Neoaves is a clade that consists of all modern birds with the exception of Palaeognathae and Galloanserae. This group is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the most inclusive crown clade containing Passer domesticus, but not Gallus gallus". Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.

<span class="mw-page-title-main">RNA-Seq</span> Lab technique in cellular biology

RNA-Seq is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome.

<span class="mw-page-title-main">Pan-genome</span> All genes of all strains in a clade

In the fields of molecular biology and genetics, a pan-genome is the entire set of genes from all strains within a clade. More generally, it is the union of all the genomes of a clade. The pan-genome can be broken down into a "core pangenome" that contains genes present in all individuals, a "shell pangenome" that contains genes present in two or more strains, and a "cloud pangenome" that contains genes only found in a single strain. Some authors also refer to the cloud genome as "accessory genome" containing 'dispensable' genes present in a subset of the strains and strain-specific genes. Note that the use of the term 'dispensable' has been questioned, at least in plant genomes, as accessory genes play "an important role in genome evolution and in the complex interplay between the genome and the environment". The field of study of pangenomes is called pangenomics.

SOAP is a suite of bioinformatics software tools from the BGI Bioinformatics department enabling the assembly, alignment, and analysis of next generation DNA sequencing data. It is particularly suited to short read sequencing data.

The 1000 Plant Transcriptomes Initiative (1KP) was an international research effort to establish the most detailed catalogue of genetic variation in plants. It was announced in 2008 and headed by Gane Ka-Shu Wong and Michael Deyholos of the University of Alberta. The project successfully sequenced the transcriptomes of 1,000 different plant species by 2014; its final capstone products were published in 2019.

<span class="mw-page-title-main">Reference genome</span> Digital nucleic acid sequence database

A reference genome is a digital nucleic acid sequence database, assembled by scientists as a representative example of the set of genes in one idealized individual organism of a species. As they are assembled from the sequencing of DNA from a number of individual donors, reference genomes do not accurately represent the set of genes of any single individual organism. Instead, a reference provides a haploid mosaic of different DNA sequences from each donor. For example, one of the most recent human reference genomes, assembly GRCh38/hg38, is derived from >60 genomic clone libraries. There are reference genomes for multiple species of viruses, bacteria, fungus, plants, and animals. Reference genomes are typically used as a guide on which new genomes are built, enabling them to be assembled much more quickly and cheaply than the initial Human Genome Project. Reference genomes can be accessed online at several locations, using dedicated browsers such as Ensembl or UCSC Genome Browser.

CRISPR-Cas design tools are computer software platforms and bioinformatics tools used to facilitate the design of guide RNAs (gRNAs) for use with the CRISPR/Cas gene editing system.

The Earth BioGenome Project (EBP) is an initiative that aims to sequence and catalog the genomes of all of Earth's currently described eukaryotic species over a period of ten years. The initiative would produce an open DNA database of biological information that provides a platform for scientific research and supports environmental and conservation initiatives. A scientific paper presenting the vision for the project was published in PNAS in April 2018, and the project officially launched November 1, 2018.

A plant genome assembly represents the complete genomic sequence of a plant species, which is assembled into chromosomes and other organelles by using DNA fragments that are obtained from different types of sequencing technology.

References

  1. Yu J, Li L, Wang S, Dong S, Chen Z, Patel N, et al. (2020). "Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta)". Gigabyte. 2020: 1–9. doi: 10.46471/gigabyte.8 . PMC   9631980 . PMID   36824590.
  2. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, et al. (October 2017). "Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome". Cell. 171 (2): 287–304.e15. doi: 10.1016/j.cell.2017.09.030 . hdl: 21.11116/0000-0000-371C-4 . PMID   28985561.
  3. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. hdl: 11858/00-001M-0000-0012-3787-A . PMID   18079367. S2CID   11115152.
  4. Pederson ER, Warshan D, Rasmussen U (September 2019). "Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss". G3. 9 (9): 2791–2797. doi:10.1534/g3.119.400279. PMC   6723128 . PMID   31285273.
  5. Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, et al. (December 2022). "Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes". GigaScience. 12. doi:10.1093/gigascience/giad079. PMC   10541799 . PMID   37776367.
  6. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, et al. (May 2011). "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science. 332 (6032): 960–3. Bibcode:2011Sci...332..960B. doi:10.1126/science.1203810. PMC   3166216 . PMID   21551031.
  7. "Phytozome". JGI MycoCosm.
  8. VanBuren R, Wai CM, Ou S, Pardo J, Bryant D, Jiang N, et al. (January 2018). "Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla". Nature Communications. 9 (1): 13. Bibcode:2018NatCo...9...13V. doi:10.1038/s41467-017-02546-5. PMC   5750206 . PMID   29296019.
  9. 1 2 Li FW, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux PM, et al. (July 2018). "Fern genomes elucidate land plant evolution and cyanobacterial symbioses". Nature Plants. 4 (7): 460–472. Bibcode:2018NatPl...4..460L. doi:10.1038/s41477-018-0188-8. PMC   6786969 . PMID   29967517.
  10. Marchant DB, Sessa EB, Wolf PG, Heo K, Barbazuk WB, Soltis PS, et al. (December 2019). "The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly". Scientific Reports. 9 (1): 18181. Bibcode:2019NatSR...918181M. doi:10.1038/s41598-019-53968-8. PMC   6890710 . PMID   31796775.
  11. "Phytozome v13". phytozome-next.jgi.doe.gov. Retrieved 2021-10-15.
  12. Qiao X, Zhang S, Paterson AH (2022). "Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions". Computational and Structural Biotechnology Journal. 20. Elsevier BV: 3248–3256. doi:10.1016/j.csbj.2022.06.026. PMC   9237934 . PMID   35782740. S2CID   249722160.
    Stull GW, Pham KK, Soltis PS, Soltis DE (May 2023). "Deep reticulation: the long legacy of hybridization in vascular plant evolution". The Plant Journal. 114 (4). John Wiley & Sons Ltd: 743–766. doi: 10.1111/tpj.16142 . PMID   36775995. S2CID   253124732.
    These reviews cite this research.
    Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, et al. (May 2022). "The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence". Nature Plants. 8 (5): 500–512. Bibcode:2022NatPl...8..500H. doi: 10.1038/s41477-022-01146-6 . PMC   9122828 . PMID   35534720. S2CID   248668428.
  13. Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, et al. (April 2022). "The Cycas genome and the early evolution of seed plants". Nature Plants. 8 (4): 389–401. Bibcode:2022NatPl...8..389L. doi: 10.1038/s41477-022-01129-7 . PMC   9023351 . PMID   35437001. S2CID   248241496.
  14. 1 2 3 4 Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, et al. (December 2016). "Sequence of the Sugar Pine Megagenome". Genetics. 204 (4): 1613–1626. doi:10.1534/genetics.116.193227. PMC   5161289 . PMID   27794028.
  15. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. (May 2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–84. Bibcode:2013Natur.497..579N. doi: 10.1038/nature12211 . hdl: 1854/LU-4110028 . PMID   23698360.
  16. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al. (June 2013). "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics. 29 (12): 1492–7. doi:10.1093/bioinformatics/btt178. PMC   3673215 . PMID   23698863.
  17. Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, et al. (July 2015). "Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism". The Plant Journal. 83 (2): 189–212. doi: 10.1111/tpj.12886 . PMID   26017574. S2CID   2642832.
  18. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. (March 2014). "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology. 15 (3): R59. doi: 10.1186/gb-2014-15-3-r59 . PMC   4053751 . PMID   24647006.
  19. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, et al. (March 2014). "Sequencing and assembly of the 22-gb loblolly pine genome". Genetics. 196 (3): 875–90. doi:10.1534/genetics.113.159715. PMC   3948813 . PMID   24653210.
  20. Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, et al. (March 2014). "Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation". Genetics. 196 (3): 891–909. doi:10.1534/genetics.113.159996. PMC   3948814 . PMID   24653211.
  21. Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, et al. (November 2016). "Draft genome of the living fossil Ginkgo biloba". GigaScience. 5 (1): 49. doi: 10.1186/s13742-016-0154-1 . PMC   5118899 . PMID   27871309.
  22. Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, et al. (September 2017). "The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae". G3. 7 (9): 3157–3167. doi: 10.1534/g3.117.300078 . PMC   5592940 . PMID   28751502.
  23. Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, et al. (February 2018). "A genome for gnetophytes and early evolution of seed plants". Nature Plants. 4 (2): 82–89. Bibcode:2018NatPl...4...82W. doi: 10.1038/s41477-017-0097-2 . hdl: 1854/LU-8558174 . PMID   29379155.
  24. Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, Putintseva YA, et al. (February 2019). "Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb)". BMC Bioinformatics. 20 (Suppl 1): 37. doi: 10.1186/s12859-018-2570-y . PMC   6362582 . PMID   30717661.
  25. Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, et al. (July 2019). "Abies alba Mill.): A Community-Generated Genomic Resource". G3. 9 (7): 2039–2049. doi: 10.1534/g3.119.400083 . PMC   6643874 . PMID   31217262.
  26. Amborella Genome Project (December 2013). "The Amborella genome and the evolution of flowering plants". Science. 342 (6165): 1241089. doi:10.1126/science.1241089. PMID   24357323. S2CID   202600898.
  27. "Amborella Genome Database". Penn State University. Archived from the original on 2013-06-28.
  28. "Chloranthus spicatus (Thunb.) Makino". www.gbif.org. Retrieved 2022-07-07.
  29. Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, et al. (November 2021). "Chloranthus genome provides insights into the early diversification of angiosperms". Nature Communications. 12 (1): 6930. Bibcode:2021NatCo..12.6930G. doi:10.1038/s41467-021-26922-4. PMC   8626473 . PMID   34836973.
  30. Strijk JS, Hinsinger DD, Roeder MM, Chatrou LW, Couvreur TL, Erkens RH, et al. (July 2021). "Chromosome-level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology". Molecular Ecology Resources. 21 (5): 1608–1619. doi: 10.1111/1755-0998.13353 . PMC   8251617 . PMID   33569882.
  31. He X, Wang Y, Lian J, Zheng J, Zhou J, Li J, et al. (November 2022). "The whole-genome assembly of an endangered Salicaceae species: Chosenia arbutifolia (Pall.) A. Skv". GigaScience. 11. doi:10.1093/gigascience/giac109. PMC   9661892 . PMID   36374197.
  32. Soltis PS, Folk RA, Soltis DE (2019). "Darwin review: Angiosperm phylogeny and evolutionary radiations". Proceedings of the Royal Society B: Biological Sciences. 286 (1899). doi:10.1098/rspb.2019.0099.
  33. Nock CJ, Baten A, Mauleon R, Langdon KS, Topp B, Hardner C, et al. (October 2020). "Chromosome-Scale Assembly and Annotation of the Macadamia Genome (Macadamia integrifolia HAES 741)". G3. 10 (10): 3497–3504. doi:10.1534/g3.120.401326. PMC   7534425 . PMID   32747341.
  34. Murigneux V, Rai SK, Furtado A, Bruxner TJ, Tian W, Harliwong I, et al. (December 2020). "Comparison of long-read methods for sequencing and assembly of a plant genome". GigaScience. 9 (12). doi:10.1093/gigascience/giaa146. PMC   7751402 . PMID   33347571.
  35. Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, et al. (May 2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. Bibcode:2013GeBio..14R..41M. doi: 10.1186/gb-2013-14-5-r41 . PMC   4053705 . PMID   23663246.
  36. "Aquilegia caerulea". Phytozome v9.1. Archived from the original on 2015-02-20. Retrieved 2013-07-10.
  37. Strijk JS, Hinsinger DD, Zhang F, Cao K (November 2019). "Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research". GigaScience. 8 (11). doi:10.1093/gigascience/giz136. PMC   6859433 . PMID   31738437.
  38. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. (January 2014). "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature. 505 (7484): 546–9. Bibcode:2014Natur.505..546D. doi: 10.1038/nature12817 . hdl: 10230/22493 . PMID   24352233.
  39. 1 2 Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. (February 2017). "The genome of Chenopodium quinoa". Nature. 542 (7641): 307–312. Bibcode:2017Natur.542..307J. doi: 10.1038/nature21370 . hdl: 10754/622874 . PMID   28178233.
  40. Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, et al. (March 2016). "The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly". The Plant Genome. 9 (1): 0. doi: 10.3835/plantgenome2015.07.0062 . PMID   27898770.
  41. "Phytozome". phytozome.jgi.doe.gov. Retrieved 2017-06-21.
  42. 1 2 Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, et al. (November 2017). "Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti". Proc Natl Acad Sci U S A. 114 (45): 12003–12008. Bibcode:2017PNAS..11412003C. doi: 10.1073/pnas.1706367114 . PMC   5692538 . PMID   29078296.
  43. Gao Y, Liao HB, Liu TH, Wu JM, Wang ZF, Cao HL (April 2023). "Draft genome and transcriptome of Nepenthes mirabilis, a carnivorous plant in China". BMC Genomic Data. 24 (1): 21. doi: 10.1186/s12863-023-01126-5 . PMC   10103442 . PMID   37060047.
  44. Wang L, Ma G, Wang H, Cheng C, Mu S, Quan W, et al. (September 2019). "A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells". GigaScience. 8 (9). doi:10.1093/gigascience/giz116. PMC   6741815 . PMID   31513708.
  45. Sturtevant D, Lu S, Zhou ZW, Shen Y, Wang S, Song JM, et al. (March 2020). "Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds". Science Advances. 6 (11): eaay3240. doi: 10.1126/sciadv.aay3240 . PMC   7065883 . PMID   32195345.
  46. 1 2 Butts C, Bierma J, Martin R (July 2016). "Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis". Proteins. 84 (10): 1517–1533. doi:10.1002/prot.25095. PMC   5026580 . PMID   27353064.
  47. Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, et al. (December 2022). "Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis". GigaScience. 12. doi:10.1093/gigascience/giad053. PMC   10370455 . PMID   37494283.
  48. Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, et al. (June 2022). "Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae)". GigaScience. 11. doi:10.1093/gigascience/giac050. PMC   9197684 . PMID   35701375.
  49. 1 2 3 4 5 Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (March 2019). "The draft genomes of five agriculturally important African orphan crops". GigaScience. 8 (3). doi:10.1093/gigascience/giy152. PMC   6405277 . PMID   30535374.
  50. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of Marula (Sclerocarya birrea)". GigaDB Dataset. GigaScience Database. doi:10.5524/101057.
  51. 1 2 Li L, Chen X, Fang D, Dong S, Guo X, Li N, et al. (April 2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus". The New Phytologist. 234 (1): 295–310. doi:10.1111/nph.17949. PMC   7612470 . PMID   34997964.
  52. 1 2 Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, Safdari P, et al. (May 2017). "Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch". Nature Genetics. 49 (6): 904–912. doi: 10.1038/ng.3862 . PMID   28481341.
  53. Chen S, Wang Y, Yu L, Zheng T, Wang S, Yue Z, et al. (February 2021). "Genome sequence and evolution of Betula platyphylla". Horticulture Research. 8 (1): 37. Bibcode:2021HorR....8...37C. doi: 10.1038/s41438-021-00481-7 . PMC   7878895 . PMID   33574224.
  54. Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, et al. (June 2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology. 22 (11): 3098–111. Bibcode:2013MolEc..22.3098W. doi:10.1111/mec.12131. PMID   23167599. S2CID   206179485.
  55. Zhao T, Ma W, Yang Z, Liang L, Chen X, Wang G, et al. (April 2021). "A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch". GigaScience. 10 (4). doi:10.1093/gigascience/giab027. PMC   8054262 . PMID   33871007.
  56. Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, et al. (March 2021). "The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding". Horticulture Research. 8 (1): 54. Bibcode:2021HorR....8...54L. doi: 10.1038/s41438-021-00495-1 . PMC   7917096 . PMID   33642584.
  57. 1 2 3 4 Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. (August 2013). "An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions". Nature Genetics. 45 (8): 891–8. doi: 10.1038/ng.2684 . PMID   23817568.
  58. 1 2 Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. (May 2011). "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics. 43 (5): 476–81. doi:10.1038/ng.807. PMC   3083492 . PMID   21478890.
  59. "Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 | Araport". www.araport.org. Archived from the original on 2019-07-19. Retrieved 2019-03-18.
  60. The Arabidopsis Genome Initiative (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. Bibcode:2000Natur.408..796T. doi: 10.1038/35048692 . PMID   11130711.
  61. Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, Nagy I, et al. (January 2017). "The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry". Scientific Reports. 7: 40728. Bibcode:2017NatSR...740728B. doi:10.1038/srep40728. PMC   5240624 . PMID   28094805.
  62. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al. (August 2011). "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics. 43 (10): 1035–9. doi:10.1038/ng.919. PMID   21873998. S2CID   205358099.
  63. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. (August 2014). "Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome". Science. 345 (6199): 950–3. Bibcode:2014Sci...345..950C. doi:10.1126/science.1253435. PMID   25146293. S2CID   206556986.
  64. "Capsella rubella". Phytozome v9.1. Archived from the original on 2015-04-26. Retrieved 2013-07-09.
  65. Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, et al. (July 2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nature Genetics. 45 (7): 831–5. doi: 10.1038/ng.2669 . PMID   23749190.
  66. Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, et al. (October 2016). "The Cardamine hirsuta genome offers insight into the evolution of morphological diversity". Nature Plants. 2 (11): 16167. Bibcode:2016NatPl...216167G. doi: 10.1038/nplants.2016.167 . PMC   8826541 . PMID   27797353.
  67. Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, et al. (2020). "The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest". Frontiers in Plant Science. 11: 525102. doi: 10.3389/fpls.2020.525102 . PMC   7652772 . PMID   33193472.
  68. "Erysimum Genome Site". www.erysimum.org. September 17, 2019.
  69. Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, et al. (April 2020). "Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)". eLife. 9: e51712. doi: 10.7554/eLife.51712 . PMC   7180059 . PMID   32252891.
  70. Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, et al. (2013). "The Reference Genome of the Halophytic Plant Eutrema salsugineum". Frontiers in Plant Science. 4: 46. doi: 10.3389/fpls.2013.00046 . PMC   3604812 . PMID   23518688.
  71. Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, et al. (August 2011). "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics. 43 (9): 913–8. doi:10.1038/ng.889. PMC   3586812 . PMID   21822265.
  72. van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, et al. (October 2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi: 10.1186/gb-2011-12-10-r102 . PMC   3359589 . PMID   22014239.
  73. Wang L, Fan L, Zhao Z, Zhang Z, Jiang L, Chai M, et al. (October 2022). "The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family". GigaScience. 11. doi:10.1093/gigascience/giac106. PMC   9618406 . PMID   36310248.
  74. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. (April 2008). "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)". Nature. 452 (7190): 991–6. Bibcode:2008Natur.452..991M. doi:10.1038/nature06856. PMC   2836516 . PMID   18432245.
  75. Ye G, Zhang H, Chen B, Nie S, Liu H, Gao W, et al. (February 2019). "De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth". The Plant Journal. 97 (4): 779–794. doi: 10.1111/tpj.14159 . PMID   30427081.
  76. Pei T, Yan M, Kong Y, Fan H, Liu J, Cui M, et al. (2021). "The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway". Gigabyte. 2021: 1–30. doi: 10.46471/gigabyte.14 . PMC   10038137 . PMID   36967728.
  77. Hoang NV, Sogbohossou EO, Xiong W, Simpson CJ, Singh P, Walden N, et al. (April 2023). "The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae". The Plant Cell. 35 (5): 1334–1359. doi:10.1093/plcell/koad018. PMC   10118270 . PMID   36691724.
  78. Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, et al. (December 2017). "The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism". Nature Communications. 8 (1): 1899. Bibcode:2017NatCo...8.1899Y. doi:10.1038/s41467-017-01491-7. PMC   5711932 . PMID   29196618.
  79. Fu Y, Li L, Hao S, Guan R, Fan G, Shi C, et al. (June 2017). "Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata". GigaScience. 6 (6): 1–5. doi:10.1093/gigascience/gix033. PMC   5530320 . PMID   28475810.
  80. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. (January 2013). "The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions". Nature Genetics. 45 (1): 51–8. doi: 10.1038/ng.2470 . hdl: 2434/619399 . PMID   23179023.
  81. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. (July 2012). "The genome of melon (Cucumis melo L.)". Proceedings of the National Academy of Sciences of the United States of America. 109 (29): 11872–7. Bibcode:2012PNAS..10911872G. doi: 10.1073/pnas.1205415109 . PMC   3406823 . PMID   22753475.
  82. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. (December 2009). "The genome of the cucumber, Cucumis sativus L". Nature Genetics. 41 (12): 1275–81. doi: 10.1038/ng.475 . PMID   19881527.
  83. Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, et al. (April 2019). "The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita". Molecular Plant. 12 (4): 506–520. doi: 10.1016/j.molp.2018.12.023 . PMID   30630074.
  84. Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, et al. (May 2021). "The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative". Horticulture Research. 8 (1): 109. Bibcode:2021HorR....8..109B. doi: 10.1038/s41438-021-00544-9 . PMC   8087764 . PMID   33931618.
  85. Xia M, Han X, He H, Yu R, Zhen G, Jia X, et al. (June 2018). "Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo". GigaScience. 7 (6). doi:10.1093/gigascience/giy067. PMC   6007378 . PMID   29893829.
  86. Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, et al. (July 2022). "Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses". The New Phytologist. 235 (1): 276–291. doi:10.1111/nph.18017. PMID   35118662. S2CID   246529299.
  87. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al. (February 2013). "Draft genome sequence of the rubber tree Hevea brasiliensis". BMC Genomics. 14: 75. doi: 10.1186/1471-2164-14-75 . PMC   3575267 . PMID   23375136.
  88. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, et al. (February 2011). "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L". DNA Research. 18 (1): 65–76. doi:10.1093/dnares/dsq030. PMC   3041505 . PMID   21149391.
  89. Prochnik et al. (2012), J. Tropical Plant Biology
  90. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, et al. (September 2010). "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology. 28 (9): 951–6. doi:10.1038/nbt.1674. PMC   2945230 . PMID   20729833.
  91. Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, et al. (July 2021). "A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert". Genomics Proteomics Bioinformatics. S1672-0229 (21): 00162–5. doi: 10.1016/j.gpb.2021.04.003 . PMC   9510866 . PMID   34339842. S2CID   236885144.
  92. Gao F, Wang X, Li X, Xu M, Li H, Abla M, et al. (July 2018). "Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub". GigaScience. 7 (7). doi:10.1093/gigascience/giy074. PMC   6048559 . PMID   29917074.
  93. Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, et al. (2012). "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology. 21 (1): 98–112. doi:10.1007/s13562-011-0088-8. PMC   3886394 . PMID   24431589.
  94. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, et al. (November 2011). "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology. 30 (1): 83–9. doi: 10.1038/nbt.2022 . PMID   22057054.
  95. 1 2 Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. (April 2016). "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics. 48 (4): 438–46. doi: 10.1038/ng.3517 . hdl: 2346/93664 . PMID   26901068.
  96. Liu Y, Zhang X, Han K, Li R, Xu G, Han Y, et al. (2020). "Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii". Plant Biotechnology Journal. 19 (5): 952–965. doi:10.1111/pbi.13520. PMC   8131047 . PMID   33236503.
  97. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. (March 2013). "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement" (PDF). Nature Biotechnology. 31 (3): 240–6. doi: 10.1038/nbt.2491 . PMID   23354103. S2CID   6649873.
  98. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, et al. (June 2013). "A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.)". The Plant Journal. 74 (5): 715–29. doi: 10.1111/tpj.12173 . PMID   23489434.
  99. Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, et al. (August 2020). "The chromosome-level draft genome of Dalbergia odorifera". GigaScience. 9 (8). doi:10.1093/gigascience/giaa084. PMC   7433187 . PMID   32808664.
  100. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Apple-Ring Acacia (Faidherbia albida)". GigaDB Dataset. GigaScience Database. doi:10.5524/101054 . Retrieved 2019-06-19.
  101. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. (January 2010). "Genome sequence of the palaeopolyploid soybean". Nature. 463 (7278): 178–83. Bibcode:2010Natur.463..178S. doi: 10.1038/nature08670 . PMID   20075913.
  102. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Hyacinth Bean (Lablab purpureus)". GigaDB Dataset. GigaScience Database. doi:10.5524/101056.
  103. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al. (August 2008). "Genome structure of the legume, Lotus japonicus". DNA Research. 15 (4): 227–39. doi:10.1093/dnares/dsn008. PMC   2575887 . PMID   18511435.
  104. Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, et al. (November 2011). "The Medicago genome provides insight into the evolution of rhizobial symbioses". Nature. 480 (7378): 520–4. Bibcode:2011Natur.480..520Y. doi:10.1038/nature10625. PMC   3272368 . PMID   22089132.
  105. He Q, Li Z, Liu Y, Yang H, Liu L, Ren Y, et al. (September 2023). "Chromosome-scale assembly and analysis of Melilotus officinalis genome for SSR development and nodulation genes analysis". The Plant Genome. 16 (3): e20345. doi: 10.1002/tpg2.20345 . PMID   37259688.
  106. "Phaseolus vulgaris v1.0". Phytozome v9.1. Archived from the original on 2015-04-15. Retrieved 2013-07-09.
  107. Sudalaimuthuasari N, Ali R, Kottackal M, Rafi M, Al Nuaimi M, Kundu B, et al. (July 2022). "The Genome of the Mimosoid Legume Prosopis cineraria, a Desert Tree". International Journal of Molecular Sciences. 23 (15): 8503. doi: 10.3390/ijms23158503 . PMC   9369113 . PMID   35955640.
  108. 1 2
    Ugalde JM, Straube H (August 2023). "New genes on the block: Neofunctionalization of tandem duplicate genes with putative new functions in Arabidopsis". Plant Physiology. 192 (4). Oxford University Press: 2574–2576. doi:10.1093/plphys/kiad271. PMC   10400027 . PMID   37158166. S2CID   258566187.
    This review cites this research.
    Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, et al. (March 2023). "The giant diploid faba genome unlocks variation in a global protein crop". Nature. 615 (7953): 652–659. Bibcode:2023Natur.615..652J. doi:10.1038/s41586-023-05791-5. PMC   10033403 . PMID   36890232.
  109. Fuller T, Bickhart DM, Koch LM, Kucek LK, Ali S, Mangelson H, et al. (2023-11-13). "A reference assembly for the legume cover crop hairy vetch (Vicia villosa)". GigaByte. 2023: 1–20. doi: 10.46471/gigabyte.98 . PMC   10659084 . PMID   38023065.
  110. Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (2023). "Supporting data for "Genomic data of Vigna hirtella"". GigaDB Dataset. GigaScience Database. doi:10.5524/102399.
  111. 1 2 Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (December 2022). "Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid". GigaScience. 12. doi:10.1093/gigascience/giad050. PMC   10357499 . PMID   37470496.
  112. Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (2023). "Supporting data for "Genomic data of créole bean, Vigna reflexopilosa"". GigaDB Dataset. GigaScience Database. doi:10.5524/102398.
  113. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Bambara Groundnut (Vigna subterranea)". GigaDB Dataset. GigaScience Database. doi:10.5524/101055 . Retrieved 2019-06-19.
  114. Nieves JW (2013). "Alternative Therapy through Nutrients and Nutraceuticals". Osteoporosis. pp. 1739–1749. doi:10.1016/B978-0-12-415853-5.00074-1. ISBN   9780124158535. Red clover is a wild plant belonging to the legume family and is often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.
  115. Bickhart DM, Koch LM, Smith TP, Riday H, Sullivan ML (2022-02-18). "Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species". Gigabyte. 2022: 1–13. doi: 10.46471/gigabyte.42 . PMC   9650271 . PMID   36824517. S2CID   246987248.
  116. Xi H, Nguyen V, Ward C, Liu Z, Searle IR (2022-01-31). "Chromosome-level assembly of the common vetch (Vicia sativa) reference genome". Gigabyte. 2022: 1–20. doi: 10.46471/gigabyte.38 . PMC   9650280 . PMID   36824524. S2CID   246453086.
  117. Shirasawa K, Chahota R, Hirakawa H, Nagano S, Nagasaki H, Sharma T, et al. (2021-10-08). "A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum)". Gigabyte. 2021: 1–23. doi: 10.46471/gigabyte.30 . PMC   9650294 . PMID   36824333.
  118. Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, et al. (September 2019). "Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)". GigaScience. 8 (9). doi:10.1093/gigascience/giz112. PMC   6741814 . PMID   31513707.
  119. Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, et al. (July 2018). "Oak genome reveals facets of long lifespan". Nature Plants. 4 (7): 440–452. Bibcode:2018NatPl...4..440P. doi:10.1038/s41477-018-0172-3. PMC   6086335 . PMID   29915331.
  120. 1 2 Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, Huang C, et al. (May 2019). "The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition". GigaScience. 8 (5). doi:10.1093/gigascience/giz036. PMC   6497033 . PMID   31049561.
  121. Li X, Cai K, Zhang Q, Pei X, Chen S, Jiang L, et al. (June 2022). "The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis". GigaScience. 11. doi:10.1093/gigascience/giac057. PMC   9239856 . PMID   35764602.
  122. Zhang J, Zhang W, Ji F, Qiu J, Song X, Bu D, et al. (January 2020). "A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication". Plant Biotechnology Journal. 18 (9): 1848–1850. doi: 10.1111/pbi.13350 . PMC   7415773 . PMID   32004401.
  123. Ning DL, Wu T, Xiao LJ, Ma T, Fang WL, Dong RQ, et al. (February 2020). "Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis". GigaScience. 9 (2). doi:10.1093/gigascience/giaa006. PMC   7043058 . PMID   32101299.
  124. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. (November 2012). "The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads". The Plant Journal. 72 (3): 461–73. doi: 10.1111/j.1365-313X.2012.05093.x . PMID   22757964.
  125. Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, et al. (May 2018). "De novo genome assembly of the red silk cotton tree (Bombax ceiba)". GigaScience. 7 (5). doi:10.1093/gigascience/giy051. PMC   5967522 . PMID   29757382.
  126. Teh BT, Lim K, Yong CH, Ng CC, Rao SR, Rajasegaran V, et al. (November 2017). "The draft genome of tropical fruit durian (Durio zibethinus)". Nature Genetics. 49 (11): 1633–1641. doi: 10.1038/ng.3972 . PMID   28991254.
  127. "Gossypium raimondii v2.1". Phytozome v9.1. Archived from the original on 2015-02-18. Retrieved 2013-07-10.
  128. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. (February 2011). "The genome of Theobroma cacao". Nature Genetics. 43 (2): 101–8. doi: 10.1038/ng.736 . PMID   21186351. S2CID   4685532.
  129. Pennisi E (September 2010). "Scientific publishing. Genomics researchers upset by rivals' publicity". Science. 329 (5999): 1585. Bibcode:2010Sci...329.1585P. doi: 10.1126/science.329.5999.1585 . PMID   20929817.
  130. Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, et al. (June 2013). "The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color". Genome Biology. 14 (6): r53. doi: 10.1186/gb-2013-14-6-r53 . PMC   4053823 . PMID   23731509.
  131. Cornejo OE, Yee MC, Dominguez V, Andrews M, Sockell A, Strandberg E, et al. (2018-10-16). "Theobroma cacao L., provide insights into its domestication process". Communications Biology. 1 (1): 167. doi:10.1038/s42003-018-0168-6. PMC   6191438 . PMID   30345393.
  132. Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, et al. (September 2012). "A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica". BMC Genomics. 13: 464. doi: 10.1186/1471-2164-13-464 . PMC   3507787 . PMID   22958331.
  133. Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, et al. (25 December 2011). "De novo sequencing and assembly ofAzadirachta indica fruit transcriptome" (PDF). Current Science. 101 (12): 1553–61.
  134. He J, Bao S, Deng J, Li Q, Ma S, Liu Y, et al. (June 2022). "A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree". GigaScience. 11. doi:10.1093/gigascience/giac042. PMC   9197682 . PMID   35701376.
  135. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Horseradish Tree (Moringa oleifera)". GigaDB Dataset. GigaScience Database. doi:10.5524/101058.
  136. 1 2 3 Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J (May 2024). "Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence". Genome Research. 34 (4): 606–619. doi:10.1101/gr.277999.123. PMC   11146599 . PMID   38589251.
  137. 1 2 Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA (December 2022). "Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids". GigaScience. 12. doi:10.1093/gigascience/giad064. PMC   10460159 . PMID   37632754.
  138. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. (June 2014). "The genome of Eucalyptus grandis". Nature. 510 (7505): 356–62. Bibcode:2014Natur.510..356M. doi: 10.1038/nature13308 . hdl: 1854/LU-5655667 . PMID   24919147.
  139. Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, et al. (January 2020). "The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies". GigaScience. 9 (1). doi:10.1093/gigascience/giz160. PMC   6939829 . PMID   31895413.
  140. Voelker J, Shepherd M, Mauleon R (2021). "A high-quality draft genome for Melaleuca alternifolia (tea tree): a new platform for evolutionary genomics of myrtaceous terpene-rich species". Gigabyte. 1: 1–15. doi: 10.46471/gigabyte.28 . PMC   9650293 . PMID   36824337. S2CID   238720658.
  141. Wu S, Sun W, Xu Z, Zhai J, Li X, Li C, et al. (2020-06-01). "The genome sequence of star fruit (Averrhoa carambola)". Horticulture Research. 7 (1): 95. Bibcode:2020HorR....7...95W. doi:10.1038/s41438-020-0307-3. PMC   7261771 . PMID   32528707.
  142. Jiang S, An H, Xu F, Zhang X (March 2020). "Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome". GigaScience. 9 (3). doi:10.1093/gigascience/giaa015. PMC   7059265 . PMID   32141509.
  143. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. (February 2011). "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics. 43 (2): 109–16. doi:10.1038/ng.740. PMC   3326587 . PMID   21186353.
  144. Su W, Jing Y, Lin S, Yue Z, Yang X, Xu J, et al. (May 2021). "Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe". PNAS. 118 (20): e2101767118. Bibcode:2021PNAS..11801767S. doi: 10.1073/pnas.2101767118 . ISSN   0027-8424. PMC   8157987 . PMID   33986115.
  145. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. (October 2010). "The genome of the domesticated apple (Malus × domestica Borkh.)". Nature Genetics. 42 (10): 833–9. doi: 10.1038/ng.654 . PMID   20802477.
  146. 1 2 3 "Four Rosaceae Genomes Released". Gramene: A Resource for Comparative Plant Genomics. 11 June 2013.
  147. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. (2012). "The genome of Prunus mume". Nature Communications. 3: 1318. Bibcode:2012NatCo...3.1318Z. doi:10.1038/ncomms2290. PMC   3535359 . PMID   23271652.
  148. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. (May 2013). "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics. 45 (5): 487–94. doi: 10.1038/ng.2586 . hdl: 2434/218547 . PMID   23525075.
  149. Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, et al. (December 2020). "Chromosome-level draft genome of a diploid plum (Prunus salicina)". GigaScience. 9 (12). doi:10.1093/gigascience/giaa130. PMC   7727024 . PMID   33300949.
  150. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. (February 2013). "The genome of the pear (Pyrus bretschneideri Rehd.)". Genome Research. 23 (2): 396–408. doi:10.1101/gr.144311.112. PMC   3561880 . PMID   23149293.
  151. Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, et al. (February 2024). "Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation". The Plant Journal. 117 (4): 1264–1280. doi:10.1111/tpj.16543. PMID   37964640. S2CID   265210737.
  152. Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, et al. (February 2024). "Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation". The Plant Journal. 117 (4): 1264–1280. doi:10.1111/tpj.16543. PMID   37964640. S2CID   265210737.
  153. VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, et al. (August 2018). "A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome". GigaScience. 7 (8). doi:10.1093/gigascience/giy094. PMC   6131213 . PMID   30107523.
  154. 1 2 "Citrus clementina". Phytozome v9.1. Archived from the original on 2015-02-19. Retrieved 2013-07-10.
  155. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. (January 2013). "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics. 45 (1): 59–66. doi: 10.1038/ng.2472 . PMID   23179022.
  156. Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, et al. (November 2021). "The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway". Genomics. 113 (6): 3696–3704. doi: 10.1016/j.ygeno.2021.09.007 . PMID   34520805. S2CID   237515315.
  157. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)" (PDF). Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. OSTI   901819. PMID   16973872. S2CID   7717980.
  158. Yang W, Wang K, Zhang J, Ma J, Liu J, Ma T (September 2017). "The draft genome sequence of a desert tree Populus pruinosa". GigaScience. 6 (9): 1–7. doi:10.1093/gigascience/gix075. PMC   5603765 . PMID   28938721.
  159. Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, et al. (August 2020). "The Acer truncatum genome provides insights into the nervonic acid biosynthesis". The Plant Journal. 104 (3): 662–678. doi: 10.1111/tpj.14954 . PMC   7702125 . PMID   32772482.
  160. Yang J, Wariss HM, Tao L, Zhang R, Yun Q, Hollingsworth P, et al. (July 2019). "De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China". GigaScience. 8 (7). doi:10.1093/gigascience/giz085. PMC   6629541 . PMID   31307060.
  161. Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, et al. (May 2017). "Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics". GigaScience. 6 (5): 1–14. doi:10.1093/gigascience/gix023. PMC   5467034 . PMID   28368449.
  162. Bi Q, Zhao Y, Du W, Lu Y, Gui L, Zheng Z, et al. (June 2019). "Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome". GigaScience. 8 (6). doi:10.1093/gigascience/giz070. PMC   6593361 . PMID   31241154.
  163. Liang Q, Li H, Li S, Yuan F, Sun J, Duan Q, et al. (June 2019). "The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge)". GigaScience. 8 (6). doi:10.1093/gigascience/giz071. PMC   6593362 . PMID   31241155.
  164. Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, et al. (March 2020). "Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family". GigaScience. 9 (3). doi:10.1093/gigascience/giaa013. PMC   7050300 . PMID   32118265.
  165. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature. 449 (7161): 463–7. Bibcode:2007Natur.449..463J. doi: 10.1038/nature06148 . hdl: 11577/2430527 . PMID   17721507.
  166. Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A (2019-09-20). "A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae". PeerJ. 7: e7649. doi: 10.7717/peerj.7649 . PMC   6756140 . PMID   31579586.
  167. Yang J, Zhang G, Zhang J, Liu H, Chen W, Wang X, et al. (June 2017). "Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus". GigaScience. 6 (6): 1–7. doi:10.1093/gigascience/gix028. PMC   5449645 . PMID   28431028.
  168. "The Sunflower Genome Database".
  169. Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. (2017). "The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution". Nature. 546 (7656): 148–152. Bibcode:2017Natur.546..148B. doi: 10.1038/nature22380 . hdl: 1828/12772 . PMID   28538728.
  170. Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, et al. (2017). "Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce". Nature Communications. 8: 14953. Bibcode:2017NatCo...814953R. doi:10.1038/ncomms14953. PMC   5394340 . PMID   28401891.
  171. Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG (January 2018). "Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree". GigaScience. 7 (1): 1–16. doi:10.1093/gigascience/gix125. PMC   5905499 . PMID   29253216.
  172. Zhu QG, Xu Y, Yang Y, Guan CF, Zhang QY, Huang JW, et al. (2019-12-18). "Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution". Horticulture Research. 6 (1): 138. doi: 10.1038/s41438-019-0227-2 . PMC   6917749 . PMID   31871686.
  173. Suo Y, Sun P, Cheng H, Han W, Diao S, Li H, et al. (January 2020). "A high-quality chromosomal genome assembly of Diospyros oleifera Cheng". GigaScience. 9 (1). doi:10.1093/gigascience/giz164. PMC   6964648 . PMID   31944244.
  174. Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, et al. (2015-12-01). "Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)". GigaScience. 4 (1): 62. doi: 10.1186/s13742-015-0104-3 . PMC   4678694 . PMID   26673920.
  175. Hamilton JP, Godden GT, Lanier E, Bhat WW, Kinser TJ, Vaillancourt B, et al. (September 2020). "Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana". GigaScience. 9 (9). doi: 10.1093/gigascience/giaa093 . PMC   7476102 . PMID   32893861.
  176. Vining KJ, Johnson SR, Ahkami A, Lange I, Parrish AN, Trapp SC, et al. (February 2017). "Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement". Molecular Plant. 10 (2): 323–339. doi: 10.1016/j.molp.2016.10.018 . PMID   27867107.
  177. Zhao D, Hamilton JP, Bhat WW, Johnson SR, Godden GT, Kinser TJ, et al. (March 2019). "A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways". GigaScience. 8 (3). doi:10.1093/gigascience/giz005. PMC   6394206 . PMID   30698701.
  178. Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al. (June 2013). "Architecture and evolution of a minute plant genome". Nature. 498 (7452): 94–8. Bibcode:2013Natur.498...94I. doi:10.1038/nature12132. PMC   4972453 . PMID   23665961.
  179. Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, et al. (September 2017). "De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin". GigaScience. 6 (9): 1–7. doi:10.1093/gigascience/gix065. PMC   5737489 . PMID   28922823.
  180. Chen Y, Ma T, Zhang L, Kang M, Zhang Z, Zheng Z, et al. (January 2020). "Genomic analyses of a "living fossil": The endangered dove-tree". Molecular Ecology Resources. 20 (3): 756–769. doi:10.1111/1755-0998.13138. PMID   31970919. S2CID   210865226.
  181. "Mimulus guttatus". Phytozome v9.1. Archived from the original on 16 February 2015.
  182. Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, Caccamo M, et al. (December 2018). "Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene". Scientific Reports. 8 (1): 17942. Bibcode:2018NatSR...817942C. doi:10.1038/s41598-018-36304-4. PMC   6299000 . PMID   30560928.
  183. Canales NA, Pérez-Escobar OA, Powell RF, Töpel M, Kidner C, Nesbitt M, et al. (2022-10-06). "A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens Vahl) as a novel resource for Rubiaceae research". Gigabyte. 2022: 1–16. doi: 10.46471/gigabyte.71 . PMC   10027117 . PMID   36950143. S2CID   252810685.
  184. "Details for species Solanum lycopersicum". Sol Genomics Network.
  185. 1 2 Tomato Genome Consortium (May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature. 485 (7400): 635–41. Bibcode:2012Natur.485..635T. doi:10.1038/nature11119. PMC   3378239 . PMID   22660326.
  186. Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, et al. (2019-10-01). "Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome". GigaScience. 8 (10). doi:10.1093/gigascience/giz115. PMC   6771550 . PMID   31574156.
  187. "Spud DB". solanaceae.plantbiology.msu.edu. Retrieved 2019-03-20.
  188. Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, et al. (July 2011). "Genome sequence and analysis of the tuber crop potato". Nature. 475 (7355): 189–95. doi: 10.1038/nature10158 . PMID   21743474.
  189. Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, et al. (February 2016). "Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum". The Plant Cell. 28 (2): 388–405. doi:10.1105/tpc.15.00538. PMC   4790865 . PMID   26772996.
  190. Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, et al. (April 2015). "The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives". The Plant Cell. 27 (4): 954–68. doi:10.1105/tpc.114.135954. PMC   4558694 . PMID   25873387.
  191. Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, et al. (June 2018). "Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris". Nature Communications. 9 (1): 2515. Bibcode:2018NatCo...9.2515V. doi:10.1038/s41467-018-04344-z. PMC   6023873 . PMID   29955043.
  192. Sun G, Xu Y, Liu H, Sun T, Zhang J, Hettenhausen C, et al. (July 2018). "Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis". Nature Communications. 9 (1): 2683. Bibcode:2018NatCo...9.2683S. doi:10.1038/s41467-018-04721-8. PMC   6041341 . PMID   29992948.
  193. Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (December 2012). "A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research". Molecular Plant-Microbe Interactions. 25 (12): 1523–30. doi: 10.1094/MPMI-06-12-0148-TA . hdl: 2434/618758 . PMID   22876960.
  194. 1 2 Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. (June 2013). "Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis". Genome Biology. 14 (6): R60. doi: 10.1186/gb-2013-14-6-r60 . PMC   3707018 . PMID   23773524.
  195. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. (March 2014). "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics. 46 (3): 270–8. doi: 10.1038/ng.2877 . PMID   24441736.
  196. 1 2 Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. (April 2014). "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization". Proceedings of the National Academy of Sciences of the United States of America. 111 (14): 5135–40. Bibcode:2014PNAS..111.5135Q. doi: 10.1073/pnas.1400975111 . PMC   3986200 . PMID   24591624.
  197. "The Petunia Platform". Archived from the original on 9 January 2011.
  198. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. (May 2012). "Reference genome sequence of the model plant Setaria". Nature Biotechnology. 30 (6): 555–61. doi: 10.1038/nbt.2196 . PMID   22580951.
  199. Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. (November 2017). "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii". Nature. 551 (7443): 498–502. Bibcode:2017Natur.551..498L. doi: 10.1038/nature24486 . PMC   7416625 . PMID   29143815.
  200. De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA (December 2022). "Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response". GigaScience. 12. doi:10.1093/gigascience/giad034. PMC   10176504 . PMID   37171129.
  201. The International Brachypodium Initiative (February 2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi: 10.1038/nature08747 . PMID   20148030.
  202. Guo C, Wang Y, Yang A, He J, Xiao C, Lv S, et al. (February 2020). "The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication". Molecular Plant. 13 (2): 309–320. doi: 10.1016/j.molp.2019.11.008 . PMID   31778843.
  203. Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, et al. (October 2016). "3 panicoid grass species Dichanthelium oligosanthes". Genome Biology. 17 (1): 223. doi: 10.1186/s13059-016-1080-3 . PMC   5084476 . PMID   27793170.
  204. Wang X, Chen S, Ma X, Yssel AE, Chaluvadi SR, Johnson MS, et al. (March 2021). "Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis)". GigaScience. 10 (3). doi:10.1093/gigascience/giab013. PMC   7953496 . PMID   33710327.
  205. Carballo J, Santos BA, Zappacosta D, Garbus I, Selva JP, Gallo CA, et al. (July 2019). "A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality". Scientific Reports. 9 (1): 10250. Bibcode:2019NatSR...910250C. doi:10.1038/s41598-019-46610-0. PMC   6629639 . PMID   31308395.
  206. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, et al. (November 2012). "A physical, genetic and functional sequence assembly of the barley genome" (PDF). Nature. 491 (7426): 711–6. Bibcode:2012Natur.491..711T. doi: 10.1038/nature11543 . hdl:2440/76951. PMID   23075845. S2CID   10170672.
  207. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. (April 2017). "A chromosome conformation capture ordered sequence of the barley genome". Nature. 544 (7651): 427–433. Bibcode:2017Natur.544..427M. doi: 10.1038/nature22043 . hdl: 2440/106563 . PMID   28447635.
  208. Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, et al. (2013). "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution". Nature Communications. 4: 1595. Bibcode:2013NatCo...4.1595C. doi:10.1038/ncomms2596. PMC   3615480 . PMID   23481403.
  209. Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, et al. (September 2010). "Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant Journal. 63 (6): 990–1003. doi: 10.1111/j.1365-313X.2010.04293.x . PMID   20626650. S2CID   8637330.
  210. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, et al. (October 2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. Bibcode:2012Natur.490..497H. doi: 10.1038/nature11532 . PMC   7518720 . PMID   23034647.
  211. Eckardt NA (November 2000). "Sequencing the rice genome". The Plant Cell. 12 (11): 2011–7. doi:10.1105/tpc.12.11.2011. PMC   526008 . PMID   11090205.
  212. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science. 296 (5565): 79–92. Bibcode:2002Sci...296...79Y. doi:10.1126/science.1068037. PMID   11935017. S2CID   208529258.
  213. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science. 296 (5565): 92–100. Bibcode:2002Sci...296...92G. doi:10.1126/science.1068275. PMID   11935018. S2CID   2960202.
  214. "Panicum virgatum". Phytozome v9.1. Archived from the original on 2015-02-19. Retrieved 2013-07-10.
  215. Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, et al. (January 2023). "Chromosome-Scale Genome Assembly and Annotation of Allotetraploid Annual Bluegrass (Poa annua L.)". Genome Biology and Evolution. 15 (1). doi:10.1093/gbe/evac180. PMC   9838796 . PMID   36574983.
  216. 1 2 Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, et al. (June 2023). "Homoeologous evolution of the allotetraploid genome of Poa annua L". BMC Genomics. 24 (1): 350. doi: 10.1186/s12864-023-09456-5 . PMC   10291818 . PMID   37365554.
  217. Phillips AR, Seetharam AS, Albert PS, AuBuchon-Elder T, Birchler JA, Buckler ES, et al. (June 2023). "A happy accident: a novel turfgrass reference genome". G3. 13 (6). doi:10.1093/g3journal/jkad073. PMC   10234399 . PMID   37002915.
  218. Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, et al. (April 2013). "The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)". Nature Genetics. 45 (4): 456–61, 461e1-2. doi: 10.1038/ng.2569 . PMID   23435089.
  219. Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, et al. (October 2018). "Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)". GigaScience. 7 (10). doi:10.1093/gigascience/giy115. PMC   6204424 . PMID   30202850.
  220. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. (January 2009). "The Sorghum bicolor genome and the diversification of grasses". Nature. 457 (7229): 551–6. Bibcode:2009Natur.457..551P. doi: 10.1038/nature07723 . PMID   19189423. S2CID   4382410.
  221. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. (International Wheat Genome Sequencing Consortium) (August 2018). "Shifting the limits in wheat research and breeding using a fully annotated reference genome". Science. 361 (6403): 705. doi: 10.1126/science.aar7191 . hdl: 10261/169166 . PMID   30115783.
  222. Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. (April 2013). "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature. 496 (7443): 87–90. Bibcode:2013Natur.496...87L. doi: 10.1038/nature11997 . PMID   23535596.
  223. "Maize Sequence". Gramene.
  224. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. (November 2009). "The B73 maize genome: complexity, diversity, and dynamics". Science. 326 (5956): 1112–5. Bibcode:2009Sci...326.1112S. doi:10.1126/science.1178534. PMID   19965430. S2CID   21433160.
  225. Varshney RK, Shi C, Thudi M, Mariac C, et al. (September 2017). "Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments". Nature Biotechnology. 35 (10): 969–976. doi:10.1038/nbt.3943. PMC   6871012 . PMID   28922347.
  226. 1 2 Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, et al. (December 2015). "The pineapple genome and the evolution of CAM photosynthesis". Nature Genetics. 47 (12): 1435–42. doi:10.1038/ng.3435. PMC   4867222 . PMID   26523774.
  227. Wang ZF, Wu LF, Chen L, Zhu WG, Yu EP, Xu FX, et al. (May 2024). "Genome assembly of Ottelia alismoides, a multiple-carbon utilisation aquatic plant". BMC Genomic Data. 25 (1): 48. doi: 10.1186/s12863-024-01230-0 . PMC   11118731 . PMID   38783174.
  228. Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, et al. (January 2024). "A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes)". GigaScience. 13. doi:10.1093/gigascience/giae006. PMC   10938897 . PMID   38486346.
  229. D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, et al. (August 2012). "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature. 488 (7410): 213–7. Bibcode:2012Natur.488..213D. doi: 10.1038/nature11241 . PMID   22801500.
  230. Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (October 2013). "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics. 14: 683. doi: 10.1186/1471-2164-14-683 . PMC   3852598 . PMID   24094114.
  231. Wang Z, Miao H, Liu J, Yao X, Xu C, Zhao S, et al. (July 2019). "Musa balbisiana genome reveals subgenome evolution and functional divergence". Nature Plants. 1 (8): 810–821. Bibcode:2019NatPl...5..810W. doi:10.1038/s41477-019-0452-6. PMC   6784884 . PMID   31308504.
  232. Wang ZF, Rouard M, Droc G, Heslop-Harrison PJ, Ge XJ (December 2022). "Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes". GigaScience. 12. doi:10.1093/gigascience/giad005. PMC   9941839 . PMID   36807539.
  233. 1 2 Zhao H, Wang S, Wang J, Chen C, Hao S, Chen L, et al. (September 2018). "The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana)". GigaScience. 7 (9). doi:10.1093/gigascience/giy097. PMC   6117794 . PMID   30101322.
  234. Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, et al. (November 2017). "The genome draft of coconut (Cocos nucifera)". GigaScience. 6 (11): 1–11. doi:10.1093/gigascience/gix095. PMC   5714197 . PMID   29048487.
  235. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al. (May 2011). "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology. 29 (6): 521–7. doi: 10.1038/nbt.1860 . PMID   21623354.
  236. Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al. (August 2013). "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds". Nature. 500 (7462): 335–9. Bibcode:2013Natur.500..335S. doi:10.1038/nature12309. PMC   3929164 . PMID   23883927.
  237. Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications. 5: 3311. Bibcode:2014NatCo...5.3311W. doi:10.1038/ncomms4311. PMC   3948053 . PMID   24548928.
  238. Sherpa R, Devadas R, Suprasanna P, Bolbhat SN, Nikam TD (2022-08-09). "First De novo whole genome sequencing and assembly of mutant Dendrobium hybrid cultivar 'Emma White'". Gigabyte. 2022: 1–8. doi: 10.46471/gigabyte.66 . PMC   9694038 . PMID   36824506.
  239. Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, et al. (January 2015). "The genome sequence of the orchid Phalaenopsis equestris". Nature Genetics. 47 (1): 65–72. doi: 10.1038/ng.3149 . hdl: 1854/LU-5835763 . PMID   25420146.
  240. Bruccoleri RE, Oakeley EJ, Faust AM, Altorfer M, Dessus-Babus S, Burckhardt D, et al. (2023-10-05). "Genome assembly of the bearded iris, Iris pallida Lam". Gigabyte. 2023: 1–10. doi:10.46471/gigabyte.94. ISSN   2709-4715. PMC   10565908 . PMID   37829656.
  241. 1 2 Chin KJ, Pirro S (2023-03-05). "The Complete Genome Sequences of Iris sibirica and Iris virginica (Iridaceae, Asparagales)". Biodiversity Genomes. 2023. doi:10.56179/001c.72791. PMC   10019338 . PMID   36936674.
  242. 1 2 Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, et al. (January 2017). "Comparative genomics of two jute species and insight into fibre biogenesis". Nature Plants. 3 (2): 16223. Bibcode:2017NatPl...316223I. doi: 10.1038/nplants.2016.223 . PMID   28134914.
  243. Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK, et al. (June 2017). "Corchorus olitorius cv. JRO-524 (Navin)". Genomics Data. 12: 151–154. doi:10.1016/j.gdata.2017.05.007. PMC   5432662 . PMID   28540183.
  244. "Welcome to the British Ash Tree Genome Project". The British Ash Tree Genome Project. The School of Biological & Chemical Sciences.
  245. Heap T (2013-06-16). "Ash genome reveals fungus resistance". BBC News.