This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Tonewood refers to specific wood varieties used for woodwind or acoustic stringed instruments. The word implies that certain species exhibit qualities that enhance acoustic properties of the instruments, but other properties of the wood such as aesthetics and availability have always been considered in the selection of wood for musical instruments. According to Mottola's Cyclopedic Dictionary of Lutherie Terms, tonewood is:
Wood that is used to make stringed musical instruments. The term is often used to indicate wood species that are suitable for stringed musical instruments and, by exclusion, those that are not. But the list of species generally considered to be tonewoods changes constantly and has changed constantly throughout history. [1]
As a rough generalization it can be said that stiff-but-light softwoods (i.e. from coniferous trees) are favored for the soundboards or soundboard-like surface that transmits the vibrations of the strings to the ambient air. Hardwoods (i.e. from deciduous trees) are favored for the body or framing element of an instrument. Woods used for woodwind instruments include African blackwood, ( Dalbergia melanoxylon ), also known as grenadilla, used in modern clarinets and oboes. Bassoons are usually made of Maple, especially Norway maple ( Acer platanoides). Wooden flutes, recorders, and baroque and classical period instruments may be made of various hardwoods, such as pear ( Pyrus species), boxwood ( Buxus species), or ebony ( Diospyros species).
Some of the mechanical properties of common tonewoods, sorted by density. See also Physical properties of wood.
Wood species | ρ kg/m3 | J N | ELR GPa | 𝜈LR | F MPa | C MPa | S Volume % | R Sound radiation coefficient | D 3mm plate N·m |
---|---|---|---|---|---|---|---|---|---|
Balsa | 150 | 300 | 3.71 | 0.229 | 19.6 | 11.6 | 8.5 | 33.2 | 8.8 |
Paulownia | 280 | 1330 | 4.38 | 37.8 | 20.7 | 6.4 | 14.1 | ||
Northern white cedar | 350 | 1420 | 5.52 | 0.337 | 44.8 | 27.3 | 7.2 | 11.3 | 14.0 |
King Billy pine [9] | 350 | 5.80 | 69.0 | 11.6 | |||||
Sugi (Japanese cedar) | 360 | 1420 | 7.65 | 36.4 | 28.0 | 10.5 | 12.8 | ||
Western red cedar | 370 | 1560 | 7.66 | 0.378 | 51.7 | 31.4 | 6.8 | 12.3 | 20.1 |
Obeche | 380 | 1910 | 6.69 | 60.8 | 29.3 | 8.7 | 11.0 | ||
Engelmann spruce | 385 | 1740 | 9.44 | 0.422 | 62.2 | 31.5 | 11.0 | 12.9 | 25.8 |
Black cottonwood | 385 | 1560 | 8.76 | 58.6 | 31.0 | 12.4 | 12.4 | ||
Sugar pine | 400 | 1690 | 8.21 | 0.356 | 56.6 | 30.8 | 7.9 | 11.3 | 21.2 |
Eastern white pine | 400 | 1690 | 8.55 | 59.3 | 33.1 | 8.2 | 11.6 | ||
Norway spruce | 405 | 1680 | 9.70 | 63.0 | 35.5 | 12.9 | 12.0 | ||
American basswood (Linden, Lime) | 415 | 1824 | 10.07 | 0.364 | 60.0 | 32.6 | 15.8 | 11.9 | 26.1 |
Coast redwood | 415 | 2000 | 8.41 | 0.360 | 61.7 | 39.2 | 6.9 | 10.8 | 21.7 |
Black willow | 415 | 1920 | 6.97 | 53.8 | 28.3 | 13.9 | 9.9 | ||
White fir | 415 | 2140 | 10.24 | 66.9 | 39.6 | 9.8 | 12.0 | ||
Noble fir | 415 | 1820 | 11.17 | 74.4 | 39.5 | 12.4 | 12.5 | ||
Sitka spruce | 425 | 2270 | 11.03 | 0.372 | 70.0 | 38.2 | 11.5 | 12.0 | 28.8 |
White spruce | 425 | 2140 | 9.07 | 59.6 | 32.6 | 13.7 | 10.9 | ||
Okoume | 430 | 1790 | 8.47 | 75.0 | 36.2 | 12.2 | 10.3 | ||
Red spruce | 435 | 2180 | 10.76 | 66.0 | 33.6 | 11.8 | 11.4 | ||
Western white pine | 435 | 1870 | 10.07 | 0.329 | 66.9 | 34.8 | 11.8 | 11.1 | 25.4 |
California red fir | 435 | 2220 | 10.23 | 71.5 | 37.3 | 11.4 | 11.1 | ||
Butternut | 435 | 2180 | 8.14 | 55.9 | 35.2 | 10.6 | 9.9 | ||
White poplar | 440 | 1820 | 8.90 | 0.344 | 65.0 | NA | 8.4 | 10.2 | 22.7 |
Red alder | 450 | 2620 | 9.52 | 67.6 | 40.1 | 12.6 | 10.2 | ||
Yellow poplar | 455 | 2400 | 10.90 | 0.318 | 69.7 | 38.2 | 12.7 | 10.8 | 27.3 |
Catalpa | 460 | 2450 | 8.35 | 64.8 | 18.9 | 7.3 | 9.3 | ||
Port Orford cedar | 465 | 2620 | 11.35 | 0.378 | 84.8 | 41.9 | 10.1 | 10.6 | 29.8 |
Primavera | 465 | 3170 | 7.81 | 70.5 | 40.4 | 8.6 | 8.8 | ||
Western hemlock | 465 | 2400 | 11.24 | 0.485 | 77.9 | 37.3 | 12.4 | 10.6 | 33.1 |
Spanish cedar | 470 | 2670 | 9.12 | 70.8 | 40.4 | 10.2 | 9.4 | ||
Australian red cedar | 485 | 3130 | 9.22 | 71.5 | 36.1 | 10.8 | 9.0 | ||
Swamp ash | 481-538 | ||||||||
European alder | 495 | 2890 | 8.99 | 75.9 | 42.2 | 11.0 | 8.6 | ||
Alaskan yellow cedar | 495 | 2580 | 9.79 | 76.6 | 43.5 | 9.2 | 9.0 | ||
Sassafras | 495 | 2800 | 7.72 | 62.1 | 45.5 | 10.3 | 8.0 | ||
Douglas fir | 510 | 2760 | 12.17 | 0.292 | 86.2 | 47.9 | 11.6 | 9.6 | 29.9 |
Bald cypress | 515 | 2270 | 9.93 | 0.338 | 73.1 | 43.9 | 10.5 | 8.5 | 25.2 |
Cedar of Lebanon | 520 | 3670 | 10.1 | 82 | 42 | 10.4 | 8.5 | ||
Silver maple | 530 | 3110 | 7.86 | 61.4 | 36.0 | 12.0 | 7.3 | ||
Mediterranean cypress | 535 | 2490 | 5.28 | 44.6 | 5.9 | ||||
Kauri | 540 | 3230 | 11.87 | 86.6 | 42.3 | 11.3 | 8.7 | ||
Black ash | 545 | 3780 | 11.00 | 86.9 | 41.2 | 15.2 | 8.2 | ||
American sycamore | 545 | 3430 | 9.79 | 69.0 | 37.1 | 14.1 | 7.8 | ||
Bigleaf maple | 545 | 3780 | 10.00 | 73.8 | 41.0 | 11.6 | 7.9 | ||
Sweetgum | 545 | 3780 | 11.31 | 0.325 | 86.2 | 43.6 | 15.8 | 8.4 | 28.5 |
Anigre | 550 | 4380 | 10.95 | 83.0 | 47.7 | 11.8 | 8.1 | ||
Limba | 555 | 2990 | 10.49 | 86.2 | 45.4 | 10.8 | 7.8 | ||
Black cherry | 560 | 4230 | 10.30 | 0.392 | 84.8 | 49.0 | 11.5 | 7.7 | 27.4 |
Cerejeira | 560 | 3510 | 10.88 | 72.9 | 43.5 | 8.3 | 7.9 | ||
Queensland maple | 560 | 3620 | 10.83 | 81.0 | 47.0 | 15.0 | 7.9 | ||
American elm | 560 | 3690 | 9.24 | 81.4 | 38.1 | 14.6 | 7.3 | ||
Western larch | 575 | 3690 | 12.90 | 0.355 | 89.7 | 52.6 | 14.0 | 8.2 | 33.2 |
Avodiré | 575 | 5180 | 11.13 | 106.2 | 51.7 | 11.3 | 7.7 | ||
Lacewood | 580 | 3740 | |||||||
Honduran mahogany | 590 | 4020 | 10.06 | 0.314 | 80.8 | 46.6 | 7.5 | 7.0 | 25.1 |
Monkeypod | 600 | 4010 | 7.9 | 65.7 | 39.9 | 6.0 | 6.1 | ||
Cuban mahogany | 600 | 4120 | 9.31 | 74.4 | 43.3 | 8.0 | 6.6 | ||
Peruvian walnut | 600 | 4250 | 7.81 | 77.0 | 45.2 | 11.4 | 6.0 | ||
Red elm | 600 | 3830 | 10.28 | 89.7 | 43.9 | 13.8 | 6.9 | ||
Red maple | 610 | 4230 | 11.31 | 0.434 | 92.4 | 45.1 | 12.6 | 7.1 | 31.4 |
Black walnut | 610 | 4490 | 11.59 | 0.495 | 100.7 | 52.3 | 12.8 | 7.1 | 34.5 |
Koa | 610 | 5180 | 10.37 | 87.0 | 48.7 | 12.4 | 6.8 | ||
Sycamore Maple | 615 | 4680 | 9.92 | 98.1 | 55.0 | 12.3 | 6.5 | ||
California black oak | 620 | 4840 | 6.76 | 59.4 | 38.9 | 10.2 | 5.3 | ||
Nyatoh | 620 | 4760 | 13.37 | 96.0 | 54.4 | 8.7 | 7.5 | ||
Oregon myrtle | 635 | 5650 | 8.45 | 66.9 | 38.9 | 11.9 | 5.7 | ||
English walnut | 640 | 5410 | 10.81 | 111.5 | 50.2 | 13.0 | 6.4 | ||
Green ash | 640 | 5340 | 11.40 | 97.2 | 48.8 | 12.5 | 6.6 | ||
Australian blackwood | 640 | 5180 | 14.82 | 103.6 | 41.0 | 11.9 | 7.5 | ||
African mahogany | 640 | 4760 | 10.60 | 91.0 | 49.0 | 10.0 | 6.4 | ||
Redheart | 640 | 5380 | 10.32 | 98.7 | 46.2 | 10.6 | 6.3 | ||
Claro walnut | 640 | 5030 | 10.7 | ||||||
Norway maple | 645 | 4510 | 10.60 | 115.0 | 59.0 | 6.3 | |||
Teak | 655 | 4740 | 12.28 | 97.1 | 54.8 | 7.2 | 6.6 | ||
Narra | 655 | 5620 | 11.89 | 96.3 | 57.0 | 6.9 | 6.5 | ||
Iroko | 660 | 5610 | 9.38 | 87.6 | 54.0 | 8.8 | 5.7 | ||
Sapele | 670 | 6280 | 12.04 | 109.9 | 60.4 | 12.8 | 6.3 | ||
White ash | 675 | 5870 | 12.00 | 0.371 | 103.5 | 51.1 | 13.3 | 6.2 | 31.3 |
Dark red meranti | 675 | 3570 | 12.02 | 87.7 | 48.8 | 12.5 | 6.3 | ||
European ash | 680 | 6580 | 12.31 | 103.6 | 51.0 | 15.3 | 6.3 | ||
Makore | 685 | 5350 | 10.71 | 112.6 | 57.2 | 12.4 | 5.8 | ||
Yellow birch | 690 | 5610 | 13.86 | 0.426 | 114.5 | 56.3 | 16.8 | 6.5 | 38.1 |
Pear | 690 | 7380 | 7.80 | 83.3 | 44.1 | 13.8 | 4.9 | ||
Field maple | 690 | 5110 | 11.80 | 123.0 | 6.0 | ||||
Red oak | 700 | 5430 | 12.14 | 0.350 | 99.2 | 46.8 | 13.7 | 5.9 | 31.1 |
Hard maple | 705 | 6450 | 12.62 | 0.424 | 109.0 | 54.0 | 14.7 | 6.0 | 34.6 |
European beech | 710 | 6460 | 14.31 | 110.1 | 57.0 | 17.3 | 6.3 | ||
American beech | 720 | 5780 | 11.86 | 102.8 | 51.1 | 17.2 | 5.6 | ||
Afrormosia | 725 | 6980 | 11.83 | 102.9 | 66.0 | 9.9 | 5.6 | ||
Pecan | 735 | 8100 | 11.93 | 94.5 | 54.1 | 13.6 | 5.5 | ||
African padauk | 745 | 8760 | 11.72 | 116.0 | 56.0 | 7.6 | 5.3 | ||
Keruing | 745 | 6170 | 15.81 | 115.2 | 61.4 | 16.3 | 6.2 | ||
White oak | 755 | 5990 | 12.15 | 0.369 | 102.3 | 50.8 | 16.3 | 5.3 | 31.6 |
Black siris | 760 | 7260 | 11.8 | 96.4 | 56.1 | 12.3 | 5.2 | ||
Black locust | 770 | 7560 | 14.14 | 133.8 | 70.3 | 10.2 | 5.6 | ||
Tzalem | 780 | 6230 | 13.10 | 88.3 | 9.5 | 5.3 | |||
Plum | 795 | 6900 | 10.19 | 88.4 | 4.5 | ||||
Zebrawood | 805 | 8160 | 16.37 | 122.8 | 63.5 | 17.8 | 5.6 | ||
Ziricote | 805 | 8780 | 10.93 | 113.1 | 63.9 | 9.8 | 4.6 | ||
Ovangkol | 825 | 5900 | 18.60 | 140.3 | 64.2 | 12.1 | 5.8 | ||
Yellowheart | 825 | 7950 | 16.64 | 115.9 | 69.5 | 12.0 | 5.4 | ||
East Indian rosewood | 830 | 10870 | 11.50 | 114.4 | 59.7 | 8.5 | 4.5 | ||
Canarywood | 830 | 6750 | 14.93 | 131.6 | 67.2 | 8.4 | 5.1 | ||
Brazilian rosewood | 835 | 12410 | 13.93 | 135.0 | 67.2 | 8.5 | 4.9 | ||
Partridgewood | 835 | 7960 | 18.17 | 127.5 | 64.1 | 12.3 | 5.6 | ||
Pignut hickory | 835 | 9520 | 15.59 | 138.6 | 63.4 | 17.5 | 5.2 | ||
Indian laurel | 855 | 10390 | 12.46 | 101.4 | 56.7 | 13.2 | 4.5 | ||
Osage orange | 855 | 11640 | 11.64 | 128.6 | 64.7 | 9.2 | 4.3 | ||
Bocote | 855 | 8950 | 12.19 | 114.4 | 59.4 | 11.6 | 4.4 | ||
Pau ferro | 865 | 8710 | 10.86 | 122.4 | 60.9 | 9.9 | 4.1 | ||
Wenge | 870 | 8600 | 17.59 | 151.7 | 80.7 | 12.9 | 5.2 | ||
Panga panga | 870 | 7310 | 15.73 | 131.2 | 75.1 | 10.5 | 4.9 | ||
Leopardwood | 885 | 9560 | 19.91 | 50.2 | 11.5 | 5.4 | |||
Bubinga | 890 | 10720 | 18.41 | 168.3 | 75.8 | 13.9 | 5.1 | ||
Purpleheart | 905 | 11190 | 20.26 | 151.7 | 83.7 | 10.6 | 5.2 | ||
Gonçalo alves | 905 | 9640 | 16.56 | 117.0 | 74.2 | 11.2 | 4.7 | ||
Jatoba | 910 | 11950 | 18.93 | 155.2 | 81.2 | 12.1 | 5.0 | ||
Santos mahogany | 915 | 10680 | 16.41 | 148.7 | 80.6 | 10.0 | 4.6 | ||
Madagascar rosewood | 935 | 12080 | 12.01 | 165.7 | 76.6 | 10.3 | 3.8 | ||
Macacauba | 950 | 12030 | 19.6 | 148.6 | 80.7 | 7.2 | 4.8 | ||
Gaboon ebony | 955 | 13700 | 16.89 | 158.1 | 76.3 | 19.6 | 4.4 | ||
Boxwood | 975 | 12610 | 17.20 | 144.5 | 68.6 | 15.8 | 4.3 | ||
Brazilwood | 980 | 12540 | 17.55 | 179.4 | 13.3 | 4.3 | |||
Chechen | 990 | 10010 | 10.8 | ||||||
Mora | 1015 | 10230 | 19.24 | 155.5 | 82.4 | 17.7 | 4.3 | ||
Curapay | 1025 | 16150 | 18.04 | 193.2 | 94.4 | 12.0 | 4.1 | ||
Honduran rosewood | 1025 | 9790 | 22.00 | 4.5 | |||||
Pau rosa | 1030 | 13080 | 17.10 | 166.2 | 92.8 | 10.7 | 4.0 | ||
Bloodwood | 1050 | 12900 | 20.78 | 174.4 | 98.7 | 11.7 | 4.2 | ||
Bulletwood | 1080 | 13920 | 23.06 | 192.2 | 89.2 | 16.8 | 4.3 | ||
Cumaru | 1085 | 14800 | 22.33 | 175.1 | 95.5 | 12.6 | 4.2 | ||
Cocobolo | 1095 | 14140 | 18.70 | 158.0 | 81.3 | 7.0 | 3.8 | ||
Ipê | 1100 | 15620 | 22.07 | 177.0 | 93.8 | 12.4 | 4.1 | ||
Macassar ebony | 1120 | 14140 | 17.35 | 157.2 | 80.2 | - | 3.5 | ||
Katalox | 1150 | 16260 | 25.62 | 193.2 | 105.1 | 11.2 | 4.1 | ||
Snakewood | 1210 | 16900 | 23.2 | 195 | 119 | 10.7 | 3.6 | ||
Lignum vitae | 1260 | 19510 | 14.09 | 127.2 | 84.1 | 14.0 | 2.7 | ||
African blackwood | 1270 | 16320 | 17.95 | 213.6 | 72.9 | 7.7 | 3.0 | ||
CFRP | 1600 | 135 | 0.30 | 1500 | 1200 | 0 | 5.7 | 334 | |
Common flat glass | 2530 | 74 | 0 | 2.1 | |||||
Aluminium alloy | 2700 | 68 | 0.33 | 0 | 1.9 | 172 | |||
Steel alloy | 8000 | 200 | 0.30 | 0 | 0.6 | 495 |
CFRP, glass, aluminium, and steel added for comparison, since they are sometimes used in musical instruments.
Density is measured at 12% moisture content of the wood, i.e. air at 70 °F (21°C) and 65% relative humidity. [10] Most professional luthiers will build at 8% moisture content (45% relative humidity), and such wood weighs less on average than that reported here, since it contains less water.
Data comes from the Wood Database, [11] except for 𝜈LR, Poisson's ratio, which comes from the Forest Product Laboratory, United States Forest Service, United States Department of Agriculture. [12] The ratio displayed here is for deformation along the radial axis caused by stress along the longitudinal axis.
The shrink volume percent shown here is the amount of shrinkage in all three dimensions as the wood goes from green to oven-dry. This can be used as a relative indicator of how much the dry wood will change as humidity changes, sometimes referred to as the instrument's "stability". However, the stability of tuning is primarily due to the length-wise shrinkage of the neck, which is typically only about 0.1% to 0.2% green to dry. [13] The volume shrinkage is mostly due to the radial and tangential shrinkage. In the case of a neck (quarter-sawn), the radial shrinkage affects the thickness of the neck, and the tangential shrinkage affects the width of the neck. Given the dimensions involved, this shrinkage should be practically unnoticeable. The shrinkage of the length of the neck, as a percent, is quite a bit less, but given the dimension, it is enough to affect the pitch of the strings.
The sound radiation coefficient is defined [14] as:
where is flexural modulus in Pascals (i.e. the number in the table multiplied by 109), and ρ is the density in kg/m3, as in the table.
From this, it can be seen that the loudness of the top of a stringed instrument increases with stiffness, and decreases with density. The loudest wood tops, such as Sitka Spruce, are lightweight and stiff, while maintaining the necessary strength. Denser woods, for example Hard Maple, often used for necks, are stronger but not as loud (R = 6 vs. 12).
When wood is used as the top of an acoustic instrument, it can be described using plate theory and plate vibrations. The flexural rigidity of an isotropic plate is:
where is flexural modulus for the material, is the plate thickness, and is Poisson's ratio for the material. Plate rigidity has units of Pascal·m3 (equivalent to N·m), since it refers to the moment per unit length per unit of curvature, and not the total moment. Wood is not isotropic, but orthotropic, so this equation describes the rigidity in one orientation. For example, using 𝜈LR, one gets the rigidity when bending on the longitudinal axis (with the grain), as would be usual for an instrument's top. This is typically 10 to 20 times the cross-grain rigidity for most species.
The value for shown in the table was calculated using this formula and a thickness of 3 mm.
When wood is used as the neck of an instrument, it can be described using beam theory. Flexural rigidity of a beam (defined as ) varies along the length as a function of x shown in the following equation:
where is the flexural modulus for the material, is the second moment of area (in m4), is the transverse displacement of the beam at x, and is the bending moment at x. Beam flexural rigidity has units of Pascal·m4 (equivalent to N·m²).
The amount of deflection at the end of a cantilevered beam is:
where is the point load at the end, and is the length. So deflection is inversely proportional to . Given two necks of the same shape and dimensions, becomes a constant, and deflection becomes inversely proportional to —in short, the higher this number for a given wood species, the less a neck will deflect under a given force (i.e. from the strings).
Read more about mechanical properties in Wood for Guitars. [15]
In addition to perceived differences in acoustic properties, a luthier may use a tonewood because of:
Many tonewoods come from sustainable sources through specialist dealers. Spruce, for example, is very common, but large pieces with even grain represent a small proportion of total supply and can be expensive. Some tonewoods are particularly hard to find on the open market, and small-scale instrument makers often turn to reclamation, [16] [17] for instance from disused salmon traps in Alaska, various old construction in the U.S Pacific Northwest, from trees that have blown down, or from specially permitted removals in conservation areas where logging is not generally permitted. [18] Mass market instrument manufacturers have started using Asian and African woods, such as bubinga ( Guibourtia species) and wenge ( Millettia laurentii ), as inexpensive alternatives to traditional tonewoods.
The Fiemme Valley, in the Alps of Northern Italy, has long served as a source of high-quality spruce for musical instruments, [19] dating from the violins of Antonio Stradivari to the piano soundboards of the contemporary maker Fazioli.
Tonewood choices vary greatly among different instrument types. Guitar makers generally favor quartersawn wood because it provides added stiffness and dimensional stability. Soft woods, like spruce, may be split rather than sawn into boards so the board surface follows the grain as much as possible, thus limiting run-out. This is especially important for braces because it maximizes their strength.
For most applications, wood must be dried before use, either in air or kilns. [20] Some luthiers prefer further seasoning for several years. Wood for instruments is typically used at 8% moisture content (which is in equilibrium with air at 45% relative humidity). This is drier than usually produced by kilns, which is 12% moisture content (65% relative humidity). If an instrument is kept at a humidity that is significantly lower than that at which it was built, it may crack. Therefore, valuable instruments must be contained in controlled environments to prevent cracking, especially cracking of the top.
Some guitar manufacturers subject the wood to rarefaction, which mimics the natural aging process of tonewoods. Torrefaction is also used for this purpose, but it often changes the cosmetic properties of the wood. Guitar builders using torrefied soundboards claim improved tone, similar to that of an aged instrument. Softwoods such as spruce, cedar, and redwood, which are commonly used for guitar soundboards, are easier to torrefy than hardwoods, such as maple.
On inexpensive guitars, it is increasingly common to use roseacer for the fretboard, which mimics rosewood, but is actually a form of thermally-modified maple.
"Roasted" maple necks are increasingly popular as manufacturers claim increased stiffness and stability in changing conditions (heat and humidity). However, while engineering tests of the thermally-modified wood indicated increased resistance to humidity, they also showed a significant reduction in strength (ultimate breaking point), while stiffness (flexural modulus) remained the same or was slightly reduced. [21] [22] Although the reduction in strength can be controlled by reducing the temperature of the process, the manufacturer recommends not using its product for structural purposes. However, it is perhaps possible to compensate for this loss of strength in guitars by using carbon-fiber stiffeners in necks and increased bracing in tops.
The steel-string acoustic guitar is a modern form of guitar that descends from the gut-strung Romantic guitar, but is strung with steel strings for a brighter, louder sound. Like the modern classical guitar, it is often referred to simply as an acoustic guitar, or sometimes as a folk guitar.
An electric guitar is a guitar that requires external electric sound amplification in order to be heard at typical performance volumes, unlike a standard acoustic guitar. It uses one or more pickups to convert the vibration of its strings into electrical signals, which ultimately are reproduced as sound by loudspeakers. The sound is sometimes shaped or electronically altered to achieve different timbres or tonal qualities via amplifier settings or knobs on the guitar. Often, this is done through the use of effects such as reverb, distortion and "overdrive"; the latter is considered to be a key element of electric blues guitar music and jazz, rock and heavy metal guitar playing. Designs also exist combining attributes of electric and acoustic guitars: the semi-acoustic and acoustic-electric guitars.
The guitar is a stringed musical instrument that is usually fretted and typically has six or twelve strings. It is usually held flat against the player's body and played by strumming or plucking the strings with the dominant hand, while simultaneously pressing selected strings against frets with the fingers of the opposite hand. A guitar pick may also be used to strike the strings. The sound of the guitar is projected either acoustically, by means of a resonant hollow chamber on the guitar, or amplified by an electronic pickup and an amplifier.
A soundboard is the surface of a string instrument that the strings vibrate against, usually via some sort of bridge. Pianos, guitars, banjos, and many other stringed instruments incorporate soundboards. The resonant properties of the soundboard and the interior of the instrument greatly increase the loudness of the vibrating strings. "The sound board is probably the most important element of a guitar in terms of its influence on the quality of the instrument's tone [timbre]."
When the [guitar] top vibrates, it generates sound waves, much like a loudspeaker. As the soundboard moves forward, the air that is in front of it is compressed and it moves away from the guitar. As the soundboard moves back, the pressure on the air in front of the guitar is reduced. This is called a "rarefaction," and air rushes in to fill the rarefied region. Through this process, an alternating series of compression and rarefaction pulses travel away from the soundboard, creating sound waves.
The fingerboard is an important component of most stringed instruments. It is a thin, long strip of material, usually wood, that is laminated to the front of the neck of an instrument. The strings run over the fingerboard, between the nut and bridge. To play the instrument, a musician presses strings down to the fingerboard to change the vibrating length, changing the pitch. This is called stopping the strings. Depending on the instrument and the style of music, the musician may pluck, strum or bow one or more strings with the hand that is not fretting the notes. On some instruments, notes can be sounded by the fretting hand alone, such as with hammer ons, an electric guitar technique.
An archtop guitar is a hollow acoustic or semi-acoustic guitar with a full body and a distinctive arched top, whose sound is particularly popular with jazz, blues, and rockabilly players.
Variax was the name of a line of guitars developed and marketed by Line 6 between 2002 and 2023. They differed from typical electric and acoustic guitars in that internal electronics processed the sound from individual strings to model (replicate) the sound of specific guitars and other instruments. The maker claims it was the first guitar family able to emulate the tones of other notable electric and acoustic guitars. It also provided a banjo and a sitar tone. The Variax was available primarily in electric guitar models, but acoustic and electric bass guitar models have also been available in the past.
A solid-body musical instrument is a string instrument such as a guitar, bass or violin built without its normal sound box and relying on an electromagnetic pickup system to directly detect the vibrations of the strings; these instruments are usually plugged into an instrument amplifier and loudspeaker to be heard. Solid-body instruments are preferred in situations where acoustic feedback may otherwise be a problem and are inherently both less expensive to build and more rugged than acoustic electric instruments.
A flamenco guitar is a guitar similar to a classical guitar, but with lower action, thinner tops and less internal bracing. It usually has nylon strings, like the classical guitar, but it generally possesses a livelier, more gritty sound compared to the classical guitar. It is used in toque, the guitar-playing part of the art of flamenco.
A person who is specialized in the making of stringed instruments such as guitars, lutes and violins is called a luthier.
An acoustic guitar is a musical instrument in the string family. When a string is plucked, its vibration is transmitted from the bridge, resonating throughout the top of the guitar. It is also transmitted to the side and back of the instrument, resonating through the air in the body, and producing sound from the sound hole. While the original, general term for this stringed instrument is guitar, the retronym 'acoustic guitar' – often used to indicate the steel stringed model – distinguishes it from an electric guitar, which relies on electronic amplification. Typically, a guitar's body is a sound box, of which the top side serves as a sound board that enhances the vibration sounds of the strings. In standard tuning the guitar's six strings are tuned (low to high) E2 A2 D3 G3 B3 E4.
Tacoma Guitars was an American manufacturing company of musical instruments. It was founded in 1991 as a division of South Korean company Young Chang. Instruments were manufactured in Tacoma, Washington. The company and brand name were later acquired by the Fender Musical Instruments Corporation. The Tacoma plant closed, and production ceased, in 2008.
Sigma Guitars is a guitar manufacturing brand originally released by C.F. Martin as a line of guitars at affordable prices to compete with the increasing number of imported guitars from Japan and elsewhere. The Sigma line was discontinued by Martin in 2007. The rights to the name were acquired by German company AMI Musical Instruments GmbH, which relaunched the brand with guitars being produced in China.
The dreadnought is a type of acoustic guitar body developed by American guitar manufacturer C.F. Martin & Company. The style, since copied by other guitar manufacturers, has become one of the most common for acoustic guitars. Its shape is characterized by square shoulders, a relatively flat tail end, and a wide waist with a large radius curve.
The Parker Fly was a model of electric guitar built by Parker Guitars. It was designed by Ken Parker and Larry Fishman, and first produced in 1993. The Fly is unique among electric guitars in the way it uses composite materials. It is notable for its light weight and resonance. It was also one of the first electric guitars to combine traditional magnetic pickups with piezoelectric pickups, allowing the guitarist to access both acoustic and electric tones. Production ended in 2016 and the company has not released a new model of any kind since.
Classical electric guitars, also known as nylon-string electric guitars, represent a unique fusion of traditional classical guitar design and modern electric guitar technology. These instruments combine the rich and warm tonal qualities of nylon-stringed classical guitars with the versatility and amplified sound capabilities of electric guitars. By integrating nylon strings with onboard electronics, pickups, and preamp systems, classical electric guitars offer musicians a wide range of sonic possibilities for various musical genres and performance settings.
Guitar bracing refers to the system of wooden struts which internally support and reinforce the soundboard and back of acoustic guitars.
Guitar manufacturing is the use of machines, tools, and labor in the production of electric and acoustic guitars. This phrase may be in reference to handcrafting guitars using traditional methods or assembly line production in large quantities using modern methods. Guitar manufacturing can also be broken into several categories such as body manufacturing and neck manufacturing, among others. Guitar manufacturing includes the production of alto, classical, tenor, and bass tuned guitars.
A lute guitar or German lute is a stringed musical instrument, common in Germany from around 1850. The instrument has a regular six-stringed guitar setup on a lute bowl, however there are many theorboed variants with up to 11 strings.
Joseph Lukes Guitars was a stringed instrument manufacturing company based in London, England. They produced one steel-string acoustic guitar model known as the "Grand Concert" and a ukulele.
This article's use of external links may not follow Wikipedia's policies or guidelines.(March 2019) |