Polarella

Last updated

Polarella
Scientific classification Red Pencil Icon.png
Kingdom: Chromista
Superphylum: Alveolata
Phylum: Myzozoa
Superclass: Dinoflagellata
Class: Dinophyceae
Order: Suessiales
Family: Suessiaceae
Genus: Polarella
M.Montresor, G.Procaccini & D.K.Stoecker
Species:
P. glacialis
Binomial name
Polarella glacialis
M.Montresor, G.Procaccini & D.K.Stoecker

Polarella is a dinoflagellate, and is the only extant genus of the Suessiaceae family. [1] The genus was described in 1999 by Marina Montresor, Gabriele Procaccini, and Diane K. Stoecker, and contains only one species, Polarella glacialis. Polarella inhabits channels within ice formations in both the Arctic and Antarctic polar regions, [2] where it plays an important role as a primary producer. [3] Polarella is a thecate dinoflagellate, wherein the cell has an outer covering of cellulose plates, which are arranged in nine latitudinal series. [1] The general morphology of Polarella is similar to that of a typical dinoflagellate. and Polarella has a zygotic life history, [4] wherein it alternates between a motile vegetative phase and a non-motile spiny cyst. [1] While it is thought that the cysts of Polarella have lost their ability to form fossils, the cyst life cycle stage has acted as link to extinct members of the Suessiaceae family. [5]

Contents

Etymology

The genus name Polarella is derived from the polar environment, which the holotype inhabits, and the species name glacialis, meaning from the ice, is in reference to how the species inhabits the ice. [1]  

Taxonomy

The genus Polarella was first described by Marina Montresor, Gabriele Procaccini, and Diane K. Stoecker as published in the Journal of Phycology in 1999. [1] The dinoflagellate was initially identified from the CCMP 1383 cell culture, a culture that was collected from the McMurdo Sound in the Ross Sea, Antarctica. [1] Montresor et al. (1999) utilized scanning and transmission electron microscopy to examine both the cyst and motile vegetative stages of the dinoflagellate, and identified the presence of a pattern of nine latitudinal plates covering the outside of the vegetative cell. Based on this particular pattern of thecal plates, as well as DNA evidence showing four different insertion or deletion events in the 18S rRNA SSU sequence, which is highly conserved and thus very specific to a given species, between Polarella and species within the closely related genus Symbiodinium, the new genus Polarella was created, and Polarella glacialis was placed within this genus as the only species. [1] Since then, no other species have been added to the genus, however in 2002, Palliani and Riding placed Polarella into the subfamily Umbriadinioideae based on morphological similarities between Polarella and the genus Umbriadinium, a dinoflagellate cyst from the early Jurassic period. [5]

Habitat and ecology

During the formation of ice in the Arctic and Antarctic, channels containing brine are created within the ice, and as the temperature decreases, the salinity of this brine increases. Polarella are known to inhabit these brine-filled channels within Arctic and Antarctic sea-ice. [1] [2] Initially, the type specimen of P. glacialis was sampled from the McMurdo Sound area of the Ross Sea in Antarctica. Following this, P. glacialis was found to have a bipolar distribution, as its presence in the waters of the Canadian Arctic was discovered. [2] A study by Thomson and Wright (2004) then further confirmed the distribution of P. glacialis across Antarctica in samples from Davis Station. [6] Polarella is photoautotrophic, has been found to greatly contribute to the biomass and primary production within the sea-ice brine channels it inhabits, [3] and is present at particularly high densities as it blooms in the austral spring (September to November). Following this period, P. glacialis encysts during the austral summer (December and January). [3] As a phytoflagellate, P. glacialis is often consumed by zooplankton, and as result, P. glacialis plays a key role as a primary producer, creating biomass for use at higher trophic levels within the polar ecosystems.

Description

Morphology of vegetative cells

Cells of Polarella were described by Montresor et al. (1999). Vegetative cells range from 10-15 µm in length and 6-9 µm in width. These cells have an elongated shape and are somewhat dorsoventrally flattened, with the epitheca being rounded, and the hypotheca being similar in shape to an abbreviated cone. The outside of the cell is smooth, and has a covering of thin polygonal thecal plates consisting of cellulose. Once the outer membrane that surrounds the cell is removed, sutures between the thecal plates become visible. The thecal plates are placed in nine latitudinal rows, with three latitudinal series in the epitheca, two series in the cingulum, and four series in the hypotheca. There is variability in the shape and number of plates across all regions of the cell. The cingulum is deep and wraps around the mid region of the cell, and the sulcus is a shallower indentation, present only through the hypotheca. The transverse flagellum wraps around the cell along the cingulum, and the longitudinal flagellum extends along the sulcus and trails behind the cell. The point where the two flagella meet at the intersection of the cingulum and sulcus is covered by an overhang of the right side of the epitheca.

Ultrastructure

Although it was not clear in the study by Montresor et al. (1999) whether P. glacialis has a single complex chloroplast with many lobes and a complex pyrenoid, or has many chloroplasts that converge into pyrenoids in the middle of the cell, the overall ultrastructure of the chloroplast was found to be similar to that of other dinoflagellates. There are three membranes on the surface of the chloroplast, and thylakoids in stacks of two or three in a longitudinal orientation. Within the hypotheca, there are several complexly shaped pyrenoids with stalks, and there are no granules of starch stored outside the pyrenoid. An interesting aspect present within the cytoplasm, at the edge of the cell on the ventral side is the refractive body, a structure consisting of four or five vesicles containing crystalline pressed close together. Further, there are several vesicles present throughout the cytoplasm, of which the function is unknown. Also scattered throughout the cytoplasm are many mitochondria. The amphiesma, which is the covering of the cell, consists of one layer of vesicles, under which microtubules may be visible, and is covered by an outer membrane. The Golgi bodies, which form vesicles varying in size, are located posterior to the nucleus.  The nucleus, with a dark granular nucleolus within the nuclear stroma, is present within the epitheca, and is large and round.

It has been found by Stephens et al. (2020) that 68% of the genome of Polarella is composed of sequences that are repetitive, specifically with long terminal repeats, which contributes to divergence between species7. Through the examination of the Polarella genome, the function of selection upon an intricate genome to promote adaptations for specific locations was illuminated. [7] Specifically, through duplications of genes in tandem, Polarella glacialis has facilitated an improved ability to survive in polar regions with low temperatures and low light levels. [7] This phenomenon of tandem repeats functions to improve adaptations to polar regions because the transcriptional response surrounding these genes is enhanced and more efficient, allowing for improved expression of these traits. [7]      

Morphology of cysts

A description of the cysts was also provided by Montresor et al. (1999). The cysts of Polarella range in length from 12 to 17 µm, range in width from 8 to 15 µm. They also have a covering of acicular processes (spikes) ranging from 2.7 to 4.2 µm long. The outside of the cyst is covered by a thick wall consisting of an outer layer, an inner layer, a lumen, and a cytoplasmic membrane as the inner most layer. The spikes arise from the outer most layer of the wall surrounding the cyst, and form in the center of polygonal plates. The epitheca has a series of three spikes, and the hypotheca has a series of four spikes. Spikes are absent from the cingulum. Within the cytoplast of the cyst are lobes of a chloroplast, as well as some mitochondria. The cyst also contains the large, round nucleus, beside which is an accumulation of crystalline surrounded by a membrane.

Life history

As a dinoflagellate, Polarella can undergo both asexual and sexual reproduction, and has a zygotic life history as described by Spector (1984). [4] Asexual reproduction occurs as a haploid motile vegetative cell undergoes binary fission to produce genetically identical haploid daughter cells. During sexual reproduction, the haploid vegetative cell undergoes mitosis to produce haploid gametes, which fuse to form diploid planozygotes. The planozygotes encyst and rest within this stage as a cyst. Upon excystment, the cell undergoes meiosis, returning to the haploid vegetative stage. Vegetative cells will undergo temporary encystment in poor environmental conditions. [4]

Distinctive characteristics

The only extant members of the Suessiales order are the members of the genera Symbiodinium and Polarella. These closely related genera can be distinguished by the contrasts between their life histories and distributions as discussed by Montresor et al. (1999). [1] Species of Symbiodinium have a life history stage that is coccoid and is an endosymbiont of various invertebrates, and is distributed throughout the oceans in the tropical and subtropical regions. Furthermore, the theca of Symbiodinium species is arranged in series of seven latitudinal plates during its flagellated, motile life stage. In contrast, Polarella glacialis does not act as an endosymbiont, and is instead free living in polar regions. Also distinct from Symbiodinium species, the theca of Polarella has plates in nine latitudinal series. Polarella is also closely related to the extinct genus Umbriadinium, as they have both been placed in the same subfamily Umbriadinioideae. [5] The cysts of the two genera are very similar morphologically, but can be differentiated based on the smaller diameter of Polarella cysts. [5] Additionally, fossils of Umbriadinium are distributed within warm waters, while Polarella is present in freezing polar waters. [5]

Fossil history

The fossil history applicable to Polarella is in relation to its ability to form cysts as discussed by Palliani and Riding (2003). [5] While it is thought that Polarella lost its ability to form cysts that are fossilisable in the early Jurassic period, it is important to note that cysts from this genus have been closely tied to fossils of cysts from extinct dinoflagellates of the Suessiaceae family. These fossilized cysts are thought to be from the Triassic and Jurassic periods. [5] It was through the grouping of fossilized cysts having a series of seven to ten latitudinal plates that the order Suessiales was created.

Related Research Articles

<span class="mw-page-title-main">Dinoflagellate</span> Unicellular algae with two flagella

The dinoflagellates are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered algae. Dinoflagellates are mostly marine plankton, but they also are common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey.

<span class="mw-page-title-main">Zooxanthellae</span> Dinoflagellates in symbiosis with coral, jellyfish and nudibranchs

Zooxanthellae is a colloquial term for single-celled dinoflagellates that are able to live in symbiosis with diverse marine invertebrates including demosponges, corals, jellyfish, and nudibranchs. Most known zooxanthellae are in the genus Symbiodinium, but some are known from the genus Amphidinium, and other taxa, as yet unidentified, may have similar endosymbiont affinities. The true Zooxanthella K.brandt is a mutualist of the radiolarian Collozoum inerme and systematically placed in Peridiniales. Another group of unicellular eukaryotes that partake in similar endosymbiotic relationships in both marine and freshwater habitats are green algae zoochlorellae.

<i>Tetraselmis</i> Genus of algae

Tetraselmis is a genus of phytoplankton. Tetraselmis is a green algal genus within the order Chlorodendrales, and they are characterized by their intensely-colored green chloroplast, their flagellated cell bodies, the presence of a pyrenoid within the chloroplast, and a scale-produced thecal-wall. Species within this genus are found in both marine and freshwater ecosystems across the globe; their habitat range is mainly limited by water depth due to their photosynthetic nature. Thus, they live in diverse water environments if enough nutrients and light are available for net photosynthetic activity. Tetraselmis species have proven to be useful for both research and industry. Tetraselmis species have been studied for understanding plankton growth rates, and recently a colonial species is being used to gain an understanding of multicellularity evolution. Additionally, many species are currently being examined for their use as biofuels due to their high lipid content.

<i>Symbiodinium</i> Genus of dinoflagellates (algae)

Symbiodinium is a genus of dinoflagellates that encompasses the largest and most prevalent group of endosymbiotic dinoflagellates known. These unicellular microalgae commonly reside in the endoderm of tropical cnidarians such as corals, sea anemones, and jellyfish, where the products of their photosynthetic processing are exchanged in the host for inorganic molecules. They are also harbored by various species of demosponges, flatworms, mollusks such as the giant clams, foraminifera (soritids), and some ciliates. Generally, these dinoflagellates enter the host cell through phagocytosis, persist as intracellular symbionts, reproduce, and disperse to the environment. The exception is in most mollusks, where these symbionts are intercellular. Cnidarians that are associated with Symbiodinium occur mostly in warm oligotrophic (nutrient-poor), marine environments where they are often the dominant constituents of benthic communities. These dinoflagellates are therefore among the most abundant eukaryotic microbes found in coral reef ecosystems.

<i>Dunaliella</i> Genus of algae

Dunaliella is a single-celled, photosynthetic green alga, that is characteristic for its ability to outcompete other organisms and thrive in hypersaline environments. It is mostly a marine organism, though there are a few freshwater species that tend to be more rare. It is a genus in which certain species can accumulate relatively large amounts of β-carotenoids and glycerol in very harsh growth conditions consisting of high light intensities, high salt concentrations, and limited oxygen and nitrogen levels, yet is still very abundant in lakes and lagoons all around the world.

<i>Pleodorina</i> Genus of algae

Pleodorina is a genus of colonial green algae in the family Volvocaceae. Description by Gilbert M. Smith.

Pleodorina Shaw 1894:

Colonies always motile; spherical to sub-spherical, with 32-128 cells lying some distance from one another just within the periphery of the homogeneous, hyaline, gelatinous, colonial envelope and not connected by cytoplasmic strands. Cells differentiated into those that are purely vegetative in character and those capable of dividing to form daughter colonies. All but four cells of the colony reproductive or about half reproductive and half vegetative. Cells spherical to ovoid in shape. Vegetative cells with a cup-shaped chloroplast containing one pyrenoid; a large anterior eyespot; two cilia of equal length with two contractile vacuoles at their base. Reproductive cells at first like the vegetative cells, later with a more massive chloroplast that eventually contains several pyrenoids. The eyespot and cilia of reproductive cells disappearing when they are mature.

<i>Ceratium</i> Genus of single-celled organisms

The genus Ceratium is restricted to a small number of freshwater dinoflagellate species. Previously the genus contained also a large number of marine dinoflagellate species. However, these marine species have now been assigned to a new genus called Tripos. Ceratium dinoflagellates are characterized by their armored plates, two flagella, and horns. They are found worldwide and are of concern due to their blooms.

<i>Karenia</i> (dinoflagellate) Genus of single-celled organisms

Karenia is a genus that consists of unicellular, photosynthetic, planktonic organisms found in marine environments. The genus currently consists of 12 described species. They are best known for their dense toxic algal blooms and red tides that cause considerable ecological and economical damage; some Karenia species cause severe animal mortality. One species, Karenia brevis, is known to cause respiratory distress and neurotoxic shellfish poisoning (NSP) in humans.

<i>Peridinium</i> Genus of single-celled organisms

Peridinium is a genus of motile, marine and freshwater dinoflagellates. Their morphology is considered typical of the armoured dinoflagellates, and their form is commonly used in diagrams of a dinoflagellate's structure. Peridinium can range from 30 to 70 μm in diameter, and has very thick thecal plates.

<i>Ornithocercus</i> Genus of single-celled organisms

Ornithocercus is a genus of planktonic dinoflagellate that is known for its complex morphology that features considerable lists growing from its thecal plates, giving an attractive appearance. Discovered in 1883, this genus has a small number of species currently categorized but is widespread in tropical and sub-tropical oceans. The genus is marked by exosymbiotic bacteria gardens under its lists, the inter-organismal dynamics of which are a current field of research. As they reside only in warm water, the genus has been used as a proxy for climate change and has potential to be an indicator species for environmental change if found in novel environments.

<i>Dinophysis</i> Genus of single-celled organisms

Dinophysis is a genus of dinoflagellates common in tropical, temperate, coastal and oceanic waters. It was first described in 1839 by Christian Gottfried Ehrenberg.

Alexandrium is a genus of dinoflagellates. It contains some of the dinoflagellate species most harmful to humans, because it produces toxic harmful algal blooms (HAB) that cause paralytic shellfish poisoning (PSP) in humans. There are about 30 species of Alexandrium that form a clade, defined primarily on morphological characters in their thecal plates.

Coolia tropicalis is a species of dinoflagellates, first found in Belize.

<i>Dinophysis acuminata</i> Species of dinoflagellate

Dinophysis acuminata is a marine plankton species of dinoflagellates that is found in coastal waters of the north Atlantic and Pacific oceans. The genus Dinophysis includes both phototrophic and heterotrophic species. D. acuminata is one of several phototrophic species of Dinophysis classed as toxic, as they produce okadaic acid which can cause diarrhetic shellfish poisoning (DSP). Okadiac acid is taken up by shellfish and has been found in the soft tissue of mussels and the liver of flounder species. When contaminated animals are consumed, they cause severe diarrhoea. D. acuminata blooms are constant threat to and indication of diarrhoeatic shellfish poisoning outbreaks.

<i>Dinophysis acuta</i> Species of dinoflagellate

Dinophysis acuta is a species of flagellated planktons belonging to the genus Dinophysis. It is one of the few unusual photosynthetic protists that acquire plastids from algae by endosymbiosis. By forming massive blooms, particularly in late summer and spring, it causes red tides. It produces toxic substances and the red tides cause widespread infection of seafood, particularly crabs and mussels. When infected animals are consumed, severe diarrhoea occurs. The clinical symptom is called diarrhetic shellfish poisoning. The main chemical toxins were identified in 2006 as okadaic acid and pectenotoxins. They can produce non-fatal or fatal amounts of toxins in their predators, which can become toxic to humans.

Durinskia is a genus of dinoflagellate that can be found in freshwater and marine environments. This genus was created to accommodate its type species, Durinskia baltica, after major classification discrepancies were found. While Durinskia species appear to be typical dinoflagellates that are armored with cellulose plates called theca, the presence of a pennate diatom-derived tertiary endosymbiont is their most defining characteristic. This genus is significant to the study of endosymbiotic events and organelle integration since structures and organelle genomes in the tertiary plastids are not reduced. Like some dinoflagellates, species in Durinskia may cause blooms.

Pelagodinium béii is a photosynthetic dinoflagellate that forms a symbiotic relationship with planktonic foraminifera.

Blastodinium is a diverse genus of dinoflagellates and important parasites of planktonic copepods. They exist in either a parasitic stage, a trophont stage, and a dinospore stage. Although morphologically and functionally diverse, as parasites they live exclusively in the intestinal tract of copeods.

Coolia is a marine dinoflagellate genus in the family Ostreopsidaceae. It was first described by Meunier in 1919. There are currently seven identified species distributed globally in tropical and temperate coastal waters. Coolia is a benthic or epiphytic type dinoflagellate: it can be found adhered to sediment or other organisms but it is not limited to these substrates. It can also be found in a freely motile form in the water column. The life cycle of Coolia involves an asexual stage where the cell divides by binary fission and a sexual stage where cysts are produced. Some of the species, for example, Coolia tropicalis and Coolia malayensis, produce toxins that can potentially cause shellfish poisoning in humans.

Torodinium (ˌtɔɹoʊˈdɪniəm) is a genus of unarmored dinoflagellates and comprises two species, Torodinium robustum and the type species Torodinium teredo. The establishment of Torodinium, as well as the characterization of the majority of its morphology, occurred in 1921 and further advances since have been slow. Lack of research is largely due to its extremely fragile and easily deformed nature, which also renders fossil records implausible. The genus was originally characterized by torsion of the sulcus and a posterior cingulum. Since then, new distinctive features have been discovered including an extremely reduced hyposome, a longitudinally ribbed episome, and a canal on the dextro-lateral side. Further investigation into the function of many anatomical features is still necessary for this genus.

References

  1. 1 2 3 4 5 6 7 8 9 Montresor M, Procaccini G, Stoecker DK (1999). "Polarella glacialis, gen. nov., sp. nov.(Dinophyceae): Suessiaceae are still alive!". Journal of Phycology. 35 (1): 186–197. doi:10.1046/j.1529-8817.1999.3510186.x. ISSN   0022-3646. S2CID   86739799.
  2. 1 2 3 Montresor M, Lovejoy C, Orsini L, Procaccini G, Roy S (2003). "Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis". Polar Biology. 26 (3): 186–194. doi:10.1007/s00300-002-0473-9. ISSN   0722-4060. S2CID   9398519.
  3. 1 2 3 Stoecker DK, Gustafson DE, Baier CT, Black MM (2000). "Primary production in the upper sea ice". Aquatic Microbial Ecology. 21: 275–287. doi: 10.3354/ame021275 . ISSN   0948-3055.
  4. 1 2 3 Spector DL (1984). Dinoflagellates. Orlando: Academic Press. ISBN   0-12-656520-1. OCLC   10532888.
  5. 1 2 3 4 5 6 7 Bucefalo Palliani R, Riding JB (2003-06-01). "Umbriadinium and Polarella : an example of selectivity in the dinoflagellate fossil record". Grana. 42 (2): 108–111. doi:10.1080/00173130303933. ISSN   0017-3134.
  6. Thomson P, Wright SW, Bolch CJ, Nichols PD, Skerratt J, McMinn A (2004). "Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae)". Journal of Phycology. 40 (5): 867–873. doi:10.1111/j.1529-8817.2004.03169.x. ISSN   0022-3646. S2CID   84087171.
  7. 1 2 3 Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. (May 2020). "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology. 18 (1): 56. doi:10.1186/s12915-020-00782-8. PMC   7245778 . PMID   32448240.