Plagiopylida

Last updated

Plagiopylida
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Subphylum: Intramacronucleata
Class: Plagiopylea
Small & Lynn, 1985
Order: Plagiopylida
Jankowski, 1978 [1]
Typical families

The plagiopylids are a small order of ciliates, including a few forms common in anaerobic habitats.

The body cilia are dense, and arise from monokinetids with an entirely unique ultrastructure; one or two rows of dikinetids run into the oral cavity, which takes the form of a groove, with a deep tube lined by oral cilia leading to the mouth. The order was introduced by Eugen Small and Denis Lynn in 1985, who treated it as a subclass of Oligohymenophorea. Since then they tend to be treated as an independent class, possibly affiliated with the Colpodea. Class Plagiopylea is divided into two clades: [2] one contains members of the order Plagiopylida (like Plagiopyla frontata and Trimyema compressum ) and the second clade contains plagiopylean ciliate associated with denitrifying obligate endosymbiont Candidatus Azoamicus ciliaticola. [3]

Related Research Articles

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Heterotrich</span> Class of single-celled organisms

The heterotrichs are a class of ciliates. They typically have a prominent adoral zone of membranelles circling the mouth, used in locomotion and feeding, and shorter cilia on the rest of the body. Many species are highly contractile, and are typically compressed or conical in form. These include some of the largest protozoa, such as Stentor and Spirostomum, as well as many brightly pigmented forms, such as certain Blepharisma.

<span class="mw-page-title-main">Litostomatea</span> Class of single-celled organisms

The Litostomatea are a class of ciliates. The group consists of three subclasses: Haptoria, Trichostomatia and Rhynchostomatia. Haptoria includes mostly carnivorous forms such as Didinium, a species of which preys primarily on the ciliate Paramecium. Trichostomatia (trichostomes) are mostly endosymbionts in the digestive tracts of vertebrates. These include the species Balantidium coli, which is the only ciliate parasitic in humans. The group Rhynchostomatia includes two free-living orders previously included among the Haptoria, but now known to be genetically distinct from them, the Dileptida and the Tracheliida.

<span class="mw-page-title-main">Colpodea</span> Class of protists in the ciliates phylum

The Colpodea are a class of ciliates, of about 200 species common in freshwater and soil habitats. The body cilia are typically uniform, and are supported by dikinetids of characteristic structure, with cilia on both kinetosomes. The mouth may be apical or ventral, with more or less prominent associated polykinetids. Many are asymmetrical, the cells twisting sideways and then untwisting again prior to division, which often takes place within cysts. Colpoda, a kidney-shaped ciliate common in organic rich conditions, is representative.

<span class="mw-page-title-main">Hypotrich</span> Subclass of single-celled organisms


The hypotrichs are a group of ciliated protozoa, common in fresh water, salt water, soil and moss. Hypotrichs possess compound ciliary organelles called "cirri," which are made up of thick tufts of cilia, sparsely distributed on the ventral surface of the cell. The multiple fused cilia which form a cirrus function together as a unit, enabling the organism to crawl along solid substrates such as submerged debris or sediments. Hypotrichs typically possess a large oral aperture, bordered on one side by a wreath or collar of membranelles, forming an "adoral zone of membranelles," or AZM.

<span class="mw-page-title-main">Stichotrich</span> Historic group of single-celled organisms

The stichotrichs were a proposed group of ciliates, in the class Spirotrichea. In a classification system proposed by Eugene Small and Denis Lynn in 1985, Stichotrichia formed a subclass containing four orders: Stichotrichida, Urostylida, Sporadotrichida and Plagiotomida. Although the group was made up of species traditionally classified among the "hypotrichs"--ciliates possessing compound ciliary organelles called cirri--it excluded euplotid ciliates such as Euplotes and Diophrys, which were placed in the subclass Hypotrichia. In later classifications proposed by Denis Lynn, Stichotrichia omits the order Plagiotomida.

<span class="mw-page-title-main">Oligotrich</span> Subclass of single-celled organisms

The oligotrichs are a group of ciliates, included among the spirotrichs. They have prominent oral cilia, which are arranged as a collar and lapel, in contrast to the choreotrichs where they form a complete circle. The body cilia are reduced to a girdle and ventral cilia. In Halteria and its relatives, they form bristles or cirri; however these forms may be closer relatives of the stichotrichs than of other oligotrichs. These organisms are very common in plankton communities, especially in marine systems. Usually found in concentrations of about 1 per ml, they are the most important herbivores in the sea, the first link in the food chain.

<i>Didinium</i> Genus of single-celled organisms

Didinium is a genus of unicellular ciliates with at least ten accepted species. All are free-living carnivores. Most are found in fresh and brackish water, but three marine species are known. Their diet consists largely of Paramecium, although they will also attack and consume other ciliates. Some species, such as D. gargantua, also feeds on non-ciliate protists, including dinoflagellates, cryptomonads, and green algae.

Plagiopyla is a genus of ciliates. It includes nine species:

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Prostomatea</span> Class of single-celled organisms

Prostomatea is a class of ciliates. It includes the genera Coleps and Pelagothrix.

<span class="mw-page-title-main">Myzozoa</span> Group of single-celled organisms

Myzozoa is a grouping of specific phyla within Alveolata, that either feed through myzocytosis, or were ancestrally capable of feeding through myzocytosis.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

<i>Climacostomum</i> Genus of single-celled organisms

Climacostomum is a genus of unicellular ciliates, belonging to the class Heterotrichea.

<span class="mw-page-title-main">Mobilida</span> Order of protists belonging to the ciliates phylum

Mobilida is a group of parasitic or symbiotic peritrich ciliates, comprising more than 280 species. Mobilids live on or within a wide variety of aquatic organisms, including fish, amphibians, molluscs, cnidarians, flatworms and other ciliates, attaching to their host organism by means of an aboral adhesive disk. Some mobilid species are pathogens of wild or farmed fish, causing severe and economically damaging diseases such as trichodinosis.

<i>Colpidium colpoda</i> Species of protozoan

Colpidium colpoda are free-living ciliates commonly found in many freshwater environments including streams, rivers, lakes and ponds across the world. Colpidium colpoda is also frequently found inhabiting wastewater treatment plants. This species is used as an indicator of water quality and waste treatment plant performance.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Licnophora</i> Genus of single-celled organisms

Licnophora is a genus of ciliates in the family Licnophoridae. They typically have an hourglass-like shape and live as ectocommensals on marine animals.

Parablepharismea is a class of free-living marine and brackish anaerobic ciliates that form a major clade of obligate anaerobes within the SAL group, together with the classes Muranotrichea and Armophorea.

<i>Halteria</i> Genus of single-celled organisms

Halteria, sometimes referred to as the jumping oligotrich, is a genus of common planktonic ciliates that are found in many freshwater environments. Halteria are easy to locate due to their abundance and distinctive behaviour with observations of Halteria potentially dating back to the 17th century and the discovery of microorganisms. Over time more has been established about their morphology and behavior, which has led to many changes in terms of classification.

References

  1. Lynn DH (2008-06-24). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature (3rd ed.). Springer. p. 409. ISBN   978-1-4020-8239-9.
  2. Boscaro V, Santoferrara LF, Zhang Q, Gentekaki E, Syberg-Olsen MJ, Del Campo J, Keeling PJ (June 2018). "EukRef-Ciliophora: a manually curated, phylogeny-based database of small subunit rRNA gene sequences of ciliates". Environmental Microbiology. 20 (6): 2218–2230. doi:10.1111/1462-2920.14264. PMID   29727060. S2CID   19135660.
  3. Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, et al. (March 2021). "Anaerobic endosymbiont generates energy for ciliate host by denitrification". Nature. 591 (7850): 445–450. doi:10.1038/s41586-021-03297-6. PMC   7969357 . PMID   33658719.

Further reading