Nephromyces

Last updated

Nephromyces
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Order:
Family:
Genus:
Nephromyces

Giard, 1888
Species

Nephromyces molgularum Giard, 1888
Nephromyces rosocovitanus Giard, 1888
Nephromyces sorokini Giard, 1888

Contents

Nephromyces is a genus of apicomplexans that are symbionts of the ascidian genus Molgula (sea grapes).

Systematics

Nephromyces was first described in 1888 by Alfred Mathieu Giard as a chytrid fungus, because of its filamentous cells. He formally named three species, each corresponding to a different species of the host animal. [1] Molecular phylogenetics later showed that Nephromyces are not actually fungi, but instead constitute a group within the Apicomplexa that is related to the Piroplasmida. [2]

Species of Nephromyces

Description

Nephromyces is found in the lumen of the renal sac of its host animals. The renal sac is a closed, fluid-filled structure that is derived from the epicardium during development. [3] There are different cell types (at least seven in Nephromyces from Molgula manhattensis ) which appear to be different life cycle stages, as the different types appear in a consistent sequence after initial infection of the host animal. However, in a mature infection, different stages simultaneously co-occur in the same host individual. They include filaments (trophic stages), spores, motile but non-flagellated cells, and biflagellated swarmer cells. [4] The non-flagellated motile cells resemble the sporozoites of other apicomplexans, while the spores contain structures that resemble the rhoptries of the apical complex, another typical apicomplexan feature. [2]

Symbiosis

Nephromyces is specific to the family Molgulidae, and has been found in species of Molgula and at least one other molgulid genus, Bostrichobranchus (B. pilularis). [5] Every wild-collected adult Molgula animal examined has been found to contain Nephromyces, suggesting that it is a beneficial symbiont rather than a parasite; this makes Nephromyces an exception among apicomplexans, which are usually parasitic on their animal hosts. [2] However, animals without Nephromyces can be obtained by spawning and raising them in filtered seawater. These symbiont-free animals have been used to study the Nephromyces life cycle. Nephromyces is released into surrounding seawater when its host dies, and cells of Nephromyces can remain alive and infective for at least 29 days outside of a host. [6]

The renal sac organ where Nephromyces lives contains high concentrations of urate, a nitrogenous waste product. Activity of urate oxidase, an enzyme that breaks down urate, has been found in Nephromyces cells, hence they may be using the waste products from their host animal as a nitrogen source for themselves. [7]

Intracellular bacteria have been found within cells of Nephromyces from Molgula manhattensis and M. occidentalis , making this a symbiosis within a symbiosis. [8]

Related Research Articles

Apicomplexa Phylum of parasitic alveolates

The Apicomplexa are a large phylum of parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of non-photosynthetic plastid called an apicoplast, and an apical complex structure. The organelle is an adaptation that the apicomplexan applies in penetration of a host cell.

Acantharea Class of single-celled organisms

The Acantharea (Acantharia) are a group of radiolarian protozoa, distinguished mainly by their strontium sulfate skeletons. Acantharians are heterotrophic marine microplankton that range in size from about 200 microns in diameter up to several millimeters. Some acantharians have photosynthetic endosymbionts and hence are considered mixotrophs.

Endosymbiont Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον endon "within", σύν syn "together" and βίωσις biosis "living".) Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes; single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to about 10–15% of insects.

Symbiosis Type of a close and long-term biological interaction between two different biological organisms

Symbiosis is any type of a close and long-term biological interaction between two different biological organisms, be it mutualistic, commensalistic, or parasitic. The organisms, each termed a symbiont, must be of different species. In 1879, Heinrich Anton de Bary defined it as "the living together of unlike organisms". The term was subject to a century-long debate about whether it should specifically denote mutualism, as in lichens. Biologists have now abandoned that restriction.

<i>Riftia pachyptila</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents, and can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in). Ambient temperature in their natural environment ranges from 2 to 30°C.

Aposymbiosis

Aposymbiosis occurs when symbiotic organisms live apart from one another. Studies have shown that the lifecycles of both the host and the symbiont are affected in some way, usually negative, and that for obligate symbiosis the effects can be drastic. Aposymbiosis is distinct from exsymbiosis, which occurs when organisms are recently separated from a symbiotic association. Because symbionts can be vertically transmitted from parent to offspring or horizontally transmitted from the environment, the presence of an aposymbiotic state suggests that transmission of the symbiont is horizontal. A classical example of a symbiotic relationship with an aposymbiotic state is the Hawaiian bobtail squid Euprymna scolopes and the bioluminescent bacteria Vibrio fischeri. While the nocturnal squid hunts, the bacteria emit light of similar intensity of the moon which camouflages the squid from predators. Juveniles are colonized within hours of hatching and Vibrio must outcompete other bacteria in the seawater through a system of recognition and infection.

Bacteriocyte

A bacteriocyte, also known as a mycetocyte, is a specialized adipocyte found primarily in certain insect groups such as aphids, tsetse flies, German cockroaches, weevils. These cells contain endosymbiotic organisms such as bacteria and fungi, which provide essential amino acids and other chemicals to their host. Bacteriocytes may aggregate into a specialized organ called the bacteriome.

<i>Mixotricha paradoxa</i> Species of protozoan that lives inside the gut of the Australian termite species Mastotermes darwiniensis and has multiple bacterial symbionts

Mixotricha paradoxa is a species of protozoan that lives inside the gut of the Australian termite species Mastotermes darwiniensis.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, Zoamastogopera, found in the stomach of termites, enable them to digest cellulose.

<i>Trichonympha</i> Genus of flagellated protists

Trichonympha is a genus of single-celled, anaerobic parabasalids of the order Hypermastigia that is found exclusively in the hindgut of lower termites and wood roaches. Trichonympha’s bell shape and thousands of flagella make it an easily recognizable cell. The symbiosis between lower termites/wood roaches and Trichonympha is highly beneficial to both parties: Trichonympha helps its host digest cellulose and in return receives a constant supply of food and shelter. Trichonympha also has a variety of bacterial symbionts that are involved in sugar metabolism and nitrogen fixation.

<i>Rhizopus microsporus</i> Species of fungus

Rhizopus microsporus is a fungal plant pathogen infecting maize, sunflower, and rice.

Lucinidae Family of bivalves

Lucinidae is a family of saltwater clams, marine bivalve molluscs.

Cyanobionts are cyanobacteria that live in symbiosis with a wide range of organisms such as terrestrial or aquatic plants; as well as, algal and fungal species. They can reside within extracellular or intracellular structures of the host. In order for a cyanobacterium to successfully form a symbiotic relationship, it must be able to exchange signals with the host, overcome defense mounted by the host, be capable of hormogonia formation, chemotaxis, heterocyst formation, as well as possess adequate resilience to reside in host tissue which may present extreme conditions, such as low oxygen levels, and/or acidic mucilage. The most well-known plant-associated cyanobionts belong to the genus Nostoc. With the ability to differentiate into several cell types that have various functions, members of the genus Nostoc have the morphological plasticity, flexibility and adaptability to adjust to a wide range of environmental conditions, contributing to its high capacity to form symbiotic relationships with other organisms. Several cyanobionts involved with fungi and marine organisms also belong to the genera Richelia, Calothrix, Synechocystis, Aphanocapsa and Anabaena, as well as the species Oscillatoria spongeliae. Although there are many documented symbioses between cyanobacteria and marine organisms, little is known about the nature of many of these symbioses. The possibility of discovering more novel symbiotic relationships is apparent from preliminary microscopic observations.

Achromatorida is an order of non-pigmented intraerythrocytic parasitic alveolates belonging to the subclass Haemosporidiasina. The order was created by Jacques Euzéby in 1988.

Trophosome

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are located in the coelomic cavity in the vestimentiferan tube worms and in symbiotic flatworms of the genus Paracatenula.

Sodalis is a genus of bacteria within the family Pectobacteriaceae. This genus contains several insect endosymbionts and also free-living group. It is studied due to its potential use in biological control of tsetse fly. Sodalis is important model for evolutionary biologists because of its nascent endosymbiosis with insect.

Marine microbial symbiosis

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<i>Molgula occidentalis</i> Species of sea squirt

Molgula occidentalis is a species of marine invertebrate of the family Molgulidae. The scientific name of the species was validated and published for the first time in 1883 by Traustedt. It is a soft-bodied, intertidal ascidian, sac-like filter feeders in the subphylum tunicate characterized by a hard outer covering known as a “tunic,” abundant in the shallow subtidal and intertidal zones of the Northern Gulf of Mexico, where they establish pseudopopulations.

Symbiosome

A symbiosome is a specialised compartment in a host cell that houses an endosymbiont in a symbiotic relationship.

Richelia is a genus of nitrogen-fixing filamentous heterocystous cyanobacteria. It contains the single species Richelia intracellularis. They exist as both free-living organisms as well as symbionts within potentially up to 13 diatoms distributed throughout the global ocean. As a symbiont, Richelia can associate epiphytically and as endosymbionts within the periplasmic space between the cell membrane and cell wall of diatoms.

References

  1. "WoRMS - World Register of Marine Species - Nephromyces Giard, 1888". www.marinespecies.org. Retrieved 2017-08-02.
  2. 1 2 3 Saffo, Mary Beth; McCoy, Adam M.; Rieken, Christopher; Slamovits, Claudio H. (2010-09-14). "Nephromyces, a beneficial apicomplexan symbiont in marine animals". Proceedings of the National Academy of Sciences of the United States of America. 107 (37): 16190–16195. doi: 10.1073/pnas.1002335107 . ISSN   1091-6490. PMC   2941302 . PMID   20736348.
  3. Saffo, Mary Beth (1978-03-01). "Studies on the renal sac of the ascidian Molgula manhattensis. I. Development of the renal sac". Journal of Morphology. 155 (3): 287–309. doi:10.1002/jmor.1051550304. ISSN   1097-4687. PMID   633375. S2CID   41944155.
  4. Saffo, Mary Beth; Nelson, Rebecca (1983-12-01). "The cells of Nephromyces: developmental stages of a single life cycle". Canadian Journal of Botany. 61 (12): 3230–3239. doi:10.1139/b83-360. ISSN   0008-4026.
  5. Saffo, Mary Beth (1982-02-01). "Distribution of the endosymbiont nephromyces giard within the ascidian family molgulidae". The Biological Bulletin. 162 (1): 95–104. doi:10.2307/1540973. ISSN   0006-3185. JSTOR   1540973.
  6. Saffo, Mary Beth; Davis, Wendy L. (1982-02-01). "Modes of infection of the ascidian molgula manhattensis by its endosymbiont nephromyces giard". The Biological Bulletin. 162 (1): 105–112. doi:10.2307/1540974. ISSN   0006-3185. JSTOR   1540974.
  7. Saffo, Mary Beth (1988-12-01). "Nitrogen Waste or Nitrogen Source? Urate Degradation in the Renal Sac of Molgulid Tunicates". The Biological Bulletin. 175 (3): 403–409. doi:10.2307/1541732. ISSN   0006-3185. JSTOR   1541732.
  8. Saffo, M. B. (1990-06-01). "Symbiosis within a symbiosis: Intracellular bacteria within the endosymbiotic protistNephromyces". Marine Biology. 107 (2): 291–296. doi:10.1007/BF01319828. ISSN   0025-3162. S2CID   84979353.