Blastogregarinorina

Last updated

Blastogregarinorina
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Subclass:
Order:
Suborder:
Blastogregarinorina

Chatton & Villeneuve 1936
Families and genera

Blastogregarinorina is a suborder of parasitic alveolates of the phylum Apicomplexia

Contents

Taxonomy

This suborder currently has one family with one genus which contains one species Siedleckia caulleryi . This species is found in marine polychaetes.

History

This suborder was described by Chatton and Villeneuve in 1936 [1]

Description

A mucron is present

Syzygy does not occur.

The gamonts are composed of a single structure without septa: they lack both protomerites and deutomerites.

Anisogamy — unequal sized gamonts — is present. Gamogony occurs with gamonts still attached to intestinal wall. The gametes bud off gamonts. Gametocysts are absent

There is no sporocyst.

The zygote gives rise to 10–16 oocysts.

Related Research Articles

<span class="mw-page-title-main">Apicomplexa</span> Phylum of parasitic alveolates

The Apicomplexa are organisms of a large phylum of mainly parasitic alveolates. Most possess a unique form of organelle structure that comprises a type of (non-photosynthetic) plastid called an apicoplast—with an apical complex membrane. The organelle's apical shape is an adaptation that the apicomplexan applies in penetrating a host cell.

<span class="mw-page-title-main">Opalinidae</span> Small group of peculiar heterokonts, family Opalinidae, order Slopalinida

The opalines are a small group of peculiar heterokonts, currently assigned to the family Opalinidae, in the order Slopalinida. Their name is derived from the opalescent appearance of these microscopic organisms when illuminated with full sunlight. Most opalines live in the large intestine and cloaca of anurans, though they are sometimes found in fish, reptiles, molluscs and insects; whether they are parasitic is not certain. The unusual features of the opalines, first observed by Antonie van Leeuwenhoek in 1683, has led to much debate regarding their phylogenetic position among the protists.

<span class="mw-page-title-main">Foraminifera</span> Phylum of amoeboid protists

Foraminifera are single-celled organisms, members of a phylum or class of Rhizarian protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an external shell of diverse forms and materials. Tests of chitin are believed to be the most primitive type. Most foraminifera are marine, the majority of which live on or within the seafloor sediment, while a smaller number float in the water column at various depths, which belong to the suborder Globigerinina. Fewer are known from freshwater or brackish conditions, and some very few (nonaquatic) soil species have been identified through molecular analysis of small subunit ribosomal DNA.

<span class="mw-page-title-main">Myxophaga</span> Suborder of beetles

Myxophaga is the second-smallest suborder of the Coleoptera after Archostemata, consisting of roughly 65 species of small to minute beetles in four families. The members of this suborder are aquatic and semiaquatic, and feed on algae.

<i>Hepatozoon</i> Genus of single-celled organisms

Hepatozoon is a genus of Apicomplexa alveolates which incorporates over 300 species of obligate intraerythrocytic parasites. Species have been described from all groups of tetrapod vertebrates, as well as a wide range of haematophagous arthropods, which serve as both the vectors and definitive hosts of the parasite. By far the most biodiverse and prevalent of all haemogregarines, the genus is distinguished by its unique reciprocal trophic lifecycle which lacks the salivary transmission between hosts commonly associated with other apicomplexans. While particularly prevalent in amphibians and reptiles, the genus is more well known in veterinary circles for causing a tick-borne disease called hepatozoonosis in some mammals.

<span class="mw-page-title-main">Gregarinasina</span> Subclass of protists

The gregarines are a group of Apicomplexan alveolates, classified as the Gregarinasina or Gregarinia. The large parasites inhabit the intestines of many invertebrates. They are not found in any vertebrates. Gregarines are closely related to both Toxoplasma and Plasmodium, which cause toxoplasmosis and malaria, respectively. Both protists use protein complexes similar to those that are formed by the gregarines for gliding motility and for invading target cells. This makes the gregarines excellent models for studying gliding motility, with the goal of developing treatment options for both toxoplasmosis and malaria. Thousands of different species of gregarine are expected to be found in insects, and 99% of these gregarine species still need to be described. Each insect species can be the host of multiple gregarine species. One of the most-studied gregarines is Gregarina garnhami. In general, gregarines are regarded as a very successful group of parasites, as their hosts are distributed over the entire planet.

<span class="mw-page-title-main">Feliformia</span> Suborder of carnivores

Feliformia is a suborder within the order Carnivora consisting of "cat-like" carnivorans, including cats, hyenas, mongooses, viverrids, and related taxa. Feliformia stands in contrast to the other suborder of Carnivora, Caniformia.

<span class="mw-page-title-main">Conoidasida</span> Class of single-celled organisms

Conoidasida is a class of parasitic alveolates in the phylum Apicomplexa. The class was defined in 1988 by Levine and contains two subclasses – the coccidia and the gregarines. All members of this class have a complete, hollow, truncated conoid. Gregarines tend to parasitize invertebrates with the mature gamonts being extracellular; the coccidia mostly infect vertebrates and have intracellular gamonts.

<span class="mw-page-title-main">Adeleorina</span> Suborder of microscopic, spore-forming, single-celled parasites in the aplcomplex phylum

Adeleorina is a suborder of parasites in the phylum Apicomplexa.

Eimeriorina is a suborder of phylum Apicomplexa.

Protococcidiorida is an order within the subclass Conoidasida of the phylum Apicomplexia. All members of this order are parasitic protozoa. The order was created by Kheisin in 1956.

The Archigregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect marine invertebrates — usually annelids, ascidians, hemichordates and sipunculids.

The Neogregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect insects and are usually found in the fat body, hemolymph, hypodermis, intestine or Malpighian tubules. The most common site of infection is the fat body: many species are pathogenic for their hosts.

The Eugregarinorida are the most large and diverse order of gregarines — parasitic protists belonging to the phylum Apicomplexa. Eugregarines are found in marine, freshwater and terrestrial habitats. These species possess large trophozoites that are significantly different in morphology and behavior from the sporozoites. This taxon contains most of the known gregarine species.

The Schizocystidae are a family of parasitic alveolates in the phylum Apicomplexa. Species in this family infect insects.

Aseptatorina is a suborder of parasitic alveolates of the phylum Apicomplexa

Septatorina is a suborder of parasitic alveolates of the phylum Apicomplexa

Fusionidae is a family of the superfamily Fusionicae in the phylum Apicomplexa

Machadoella is a genus of parasitic alveolates in the phylum Apicomplexa.

Schizocystidae is a genus of parasitic alveolates in the phylum Apicomplexa.

References

  1. Levine ND (1973). "Grellia gen. n. for Eucoccidium of Grell (1953) Preoccupied". J Protozool. 20 (5): 548–9. doi:10.1111/j.1550-7408.1973.tb03569.x.