Mucron

Last updated

A mucron is an attachment organelle found in archigregarines - an order of epicellular parasitic Conoidasida. [1] [2]

In cell biology, an organelle is a specialized subunit within a cell that has a specific function. Organelles are either separately enclosed within their own lipid bilayers or are spatially distinct functional units without a surrounding lipid bilayer.

The Archigregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect marine invertebrates — usually annelids, ascidians, hemichordates and sipunculids.

Conoidasida class of protists

Conoidasida is a class of parasitic alveolates in the phylum Apicomplexa. The class was defined in 1988 by Levine and contains two subclasses – the coccidia and the gregarines. All members of this class have a complete, hollow, truncated conoid. Gregarines tend to parasitize invertebrates with the mature gamonts being extracellular, the coccidia mostly infect vertebrates and have intracellular gamonts.

The mucron is derived from the apical complex, which is found in all members of the phylum Apicomplexa. [1] [3]

In biology, a phylum is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent. Depending on definitions, the animal kingdom Animalia or Metazoa contains approximately 35 phyla, the plant kingdom Plantae contains about 14, and the fungus kingdom Fungi contains about 8 phyla. Current research in phylogenetics is uncovering the relationships between phyla, which are contained in larger clades, like Ecdysozoa and Embryophyta.

Apicomplexa phylum of protists

The Apicomplexa are a large phylum of parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of plastid called an apicoplast, and an apical complex structure. The organelle is an adaptation that the apicomplexan applies in penetration of a host cell.

The mucron is located at the anterior (apical) end of the cell and comprises the conoid, rhoptries, apical polar ring(s), and a large food vacuole (also called mucronal vacuole) having an outlet opening - a cytostome. It is used to attach and to feed from the host's cell. [4] [5] [6]

Vacuole A closed structure, found only in eukaryotic cells, that is completely surrounded by unit membrane and contains liquid material. Cells contain one or several vacuoles, that may have different functions from each other. Vacuoles have a diverse array o

A vacuole is a membrane-bound organelle which is present in all plant and fungal cells and some protist, animal and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including enzymes in solution, though in certain cases they may contain solids which have been engulfed. Vacuoles are formed by the fusion of multiple membrane vesicles and are effectively just larger forms of these. The organelle has no basic shape or size; its structure varies according to the requirements of the cell.

Cytostome Stable, specialized structure for the ingestion of food by the cell into phagosomes.

A cytostome or cell mouth is a part of a cell specialized for phagocytosis, usually in the form of a microtubule-supported funnel or groove. Food is directed into the cytostome, and sealed into vacuoles. Only certain groups of protozoa, such as the ciliates and excavates, have cytostomes. An example is Balantidium coli, a ciliate. In other protozoa, and in cells from multicellular organisms, phagocytosis takes place at any point on the cell or feeding takes place by absorption.

The epimerites of some aseptate eugregarines superficially (at the light microscopic level) resemble mucron and are usually called in the same way. [1] [3] [2] This widespread misunderstanding originated from the conventional definition first proposed by Levine in 1971: "[the mucron is] an attachment organelle of aseptate gregarines. It is similar to an epimerite, but is not set off from the rest of the gregarine body by what appears under the light microscope to be a septum" [7] : thus, it may be equally applied to archigregarines and aseptate eugregarines as both they are aseptate. Note that the genuine epimerites are usually not sparated by septa from the rest of the cell, [8] [9] so this definition is actually misleading. [2]

The Eugregarinorida are the most large and diverse order of gregarines — parasitic protists belonging to the phylum Apicomplexa. Eugregarines are found in marine, freshwater and terrestrial habitats. These species possess large trophozoites that are significantly different in morphology and behavior from the sporozoites. This taxon contains most of the known gregarine species.

Related Research Articles

Gregarinasina subclass of protists

The gregarines are a group of Apicomplexan alveolates, classified as the Gregarinasina or Gregarinia. The large parasites inhabit the intestines of a large number of invertebrates. They are not found in any vertebrates. However, gregarines are closely related to both Toxoplasma and Plasmodium, which cause toxoplasmosis and malaria, respectively. Both protists use protein complexes similar to those that are formed by the gregarines for gliding motility and invading target cells. This makes them an excellent model for studying gliding motility with the goal of developing treatment options for toxoplasmosis and malaria.

Piroplasmida order of protists

Piroplasmida is an order of parasites in the phylum Apicomplexa. They divide by binary fission and as sporozoan parasites they possess sexual and asexual phases. They include the tick parasites Babesia and Theileria.

Ciliate phylum of protozoans

The ciliates are a group of protozoans characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

Calyptospora is a genus of parasitic protozoa in the phylum Apicomplexa.

The Neogregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect insects and are usually found in the fat body, hemolymph, hypodermis, intestine or Malpighian tubules. The most common site of infection is the fat body: many species are pathogenic for their hosts.

The Exoschizonidae are a family in the phylum Apicomplexa.

Selenidioides are a genus of parasitic alveolates in the phylum Apicomplexa. Species in this genus infect marine invertebrates.

The Selenidioididae are a family of parasitic alveolates in the phylum Apicomplexa. Species in this order infect marine invertebrates.

The Platyproteum are a genus of parasitic alveolates in the phylum Apicomplexa. Species in this genus infect marine invertebrates.

Meroselenidium is a genus of parasitic alveolates in the phylum Apicomplexa. Species in this genus infect marine invertebrates.

Siedleckia are a genus of parasitic alveolates in the phylum Apicomplexa. Species in this genus infect marine invertebrates.

Exoschizon is a genus in the phylum Apicomplexa.

Lecudinidae is a family of parasitic alveolates of the phylum Apicomplexia.

Stylocephaloidea is a superfamily of parasites of the phylum Apicomplexia.

Siedleckiidae is a family of parasitic alveolates in the phylum Apicomplexa. Species in this family infect marine invertebrates.

Loxodidae A family of protists belonging to the ciliates phylum and characterized by the presence of Müller vesicles

Loxodidae is a family of karyorelict ciliates.

<i>Tracheloraphis</i> genus of protozoans

Tracheloraphis is a genus of ciliates in the family Trachelocercidae.

References

  1. 1 2 3 Perkins FO, Barta JR, Clopton RE, Peirce MA, Upton SJ (2000). "Phylum Apicomplexa". In Lee JJ, Leedale GF, Bradbury P. An Illustrated guide to the Protozoa: organisms traditionally referred to as protozoa, or newly discovered groups. 1 (2nd ed.). Society of Protozoologists. pp. 190–369. ISBN   1891276220. OCLC   704052757.
  2. 1 2 3 Simdyanov TG, Guillou L, Diakin AY, Mikhailov KV, Schrével J, Aleoshin VV. (2017) A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) PeerJ 5:e3354 https://peerj.com/articles/3354/?td=wk
  3. 1 2 Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown M, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, leGall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch C, Smirnov A, Spiegel FW. (2012) The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59:429-514. https://doi.org/10.1111/j.1550-7408.2012.00644.x
  4. Schrével J. (1971) Observations biologiques et ultrastructurales sur les Selenidiidae et leurs conséquences sur la systématique des Grégarinomorphes. Journal of Protozoology 18:448–479. https://doi.org/10.1111/j.1550-7408.1971.tb03355.x
  5. Schrével J, Valigurová A, Prensier G, Chambouvet A, Florent I, Guillou L. (2016) Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine Apicomplexa. Protist 167:339-368. https://doi.org/10.1016/j.protis.2016.06.001
  6. Simdyanov TG, Kuvardina ON. (2007) Fine structure and putative feeding mechanism of the archigregarine Selenidium orientale (Apicomplexa: Gregarinomorpha). European Journal of Protistology 43:17-25. https://doi.org/10.1016/j.ejop.2006.09.003
  7. Levine ND. (1971) Uniform terminology for the protozoan subphylum Apicomplexa. Journal of Protozoology 18:352-355. https://doi.org/10.1111/j.1550-7408.1971.tb03330.x
  8. Grassé, P.P.; Caullery, M.C. (1953). Traité de zoologie: anatomie, systématique, biologie. Tome I, Fasc. II, Protozaires, rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Paris: Masson et Cie. OCLC   642231286.
  9. Desportes I, Schrével J. (2013) Treatise on Zoology - Anatomy, Taxonomy, Biology. The Gregarines. Leiden: Brill. https://doi.org/10.1163/9789004256057