Living shoreline

Last updated
Beach grasses planted to prevent erosion at Island Beach State Park, New Jersey 2017-09-04 14 04 37 Sand dunes near the south end of Shore Road within the Southern Natural Area of Island Beach State Park, in Berkeley Township, Ocean County, New Jersey.jpg
Beach grasses planted to prevent erosion at Island Beach State Park, New Jersey

A Living shoreline is a relatively new approach for addressing shoreline erosion and protecting marsh areas. Unlike traditional structures such as bulkheads or seawalls that worsen erosion, living shorelines incorporate as many natural elements as possible which create more effective buffers in absorbing wave energy and protecting against shoreline erosion. [1] The process of creating a living shoreline is referred to as soft engineering, which utilizes techniques that incorporate ecological principles in shoreline stabilization. [2] The natural materials used in the construction of living shorelines create and maintain valuable habitats. Structural and organic materials commonly used in the construction of living shorelines include sand, wetland plants, sand fill, oyster reefs, submerged aquatic vegetation, stones and coir fiber logs. [3]

Contents

Benefits and ecosystem services

Design

A completed living shoreline project at Glenn Martin National Wildlife Refuge, Smith Island, Maryland Aerial view of completed Fog Point Living Shoreline restoration at Glenn Martin National Wildlife Refuge (27887909391).jpg
A completed living shoreline project at Glenn Martin National Wildlife Refuge, Smith Island, Maryland

Many factors need to be addressed when preparing a living shoreline project. Permitting requirements and appropriate restoration strategies for a particular habitat are two critical topics for consideration before construction begins. [6]

Planning and implementation steps

1. Analysis of the site: The bank erosion rate, elevation level, vegetation, wave energy, wind patterns, wave activity and soil type of the proposed site need to be examined to determine if it is an appropriate area for living shoreline stabilization. Restoration plans of stabilization activities are designed upon completion of the initial site analysis. [6]

2. Permitting: Before any implementation begins, permits should be applied for and obtained through the appropriate regulatory agencies. All project plans need to be in compliance with local, state and federal laws before any construction begins to avoid legal issues and ensure long-term sustainability. [6]

3. Site preparation: Once the necessary permits are obtained, preparation begins by clearing all debris, unstable trees and existing failing structures, such as bulkheads, from the site. In addition, any issues regarding stormwater runoff must also be addressed prior to the installation of a living shoreline. [6]

4. Project installation: Generally, living shoreline structures will include planting marsh, riparian, or other types of aquatic vegetation. Bio-logs, organic fiber mats and oyster shells are also readily used materials throughout installation. [6]

5. Maintenance and monitoring: The restored habitat area should be regularly monitored upon completion to obtain data on project successes. The collection of such data will improve construction and implementation strategies of future projects. The site should also be maintained by replanting necessary vegetation, removing debris and adding sand fill when appropriate. The materials should also be monitored to ensure they are staying in place and achieving desired shoreline stabilization goals. [6]

Materials

Planting trees and shrubs for a Potomac River stabilization project in Maryland US Navy 081024-N-7952W-001 Daniel Barth from Sioux Falls, S.D., plants one of 1,400 small trees and shrubs along a stretch of the Potomac River that the Navy is working to stabilize at Naval Support Facility Indian Head, Md.jpg
Planting trees and shrubs for a Potomac River stabilization project in Maryland

Vegetation zone

  • Clean dredge material and sand fill are generally used to construct a rolling slope to weaken wave energy and provide an area to plant vegetation. Regrading, filling and replanting native vegetation can occur on sites that do not have a bulkhead or on sites where bulkheads have been removed. If removing the bulkhead is not feasible, another option is to fill sand in front of the structure and regrade and replant vegetation on the shoreline and embankment. [6]
  • Roots from trees and grass stabilize the riparian area above high tide by gripping the soil. Such activity results in bank erosion minimization, wildlife habitat creation and upland runoff filtration. The type of plants that make up common riparian zones typically include grasses, shrubs and woody trees but the species of each are dependent on the naturally occurring vegetation of the area. [6]

Wetland and beach areas

Geotextile tubes filled with sand Geotextile tubes hyraulically filled with sand.jpg
Geotextile tubes filled with sand
  • Breakwaters provide erosion control and facilitate habitat development by breaking up wave activity in open-water areas. These structures, made with rock and oyster spat, should be placed in areas of medium to high wave energy and arranged parallel to the bank. Once implemented, the area around the shoreline should be calmer than before which can allow for the creation of marsh and intertidal habitat through the replanting of marsh grasses and other submerged aquatic plants. [6] [7]
  • Filter fabric is a key element in minimizing soil loss under rocks. This porous material made from natural elements is commonly implemented under breakwaters and rock sills or other hybrid living shoreline locations. [6] [8]
  • Geotextile material tubes measure about 12 feet in diameter, are filled with sediment and aligned with the shoreline to weaken wave energy and protect against erosion. These tubes facilitate oyster reef development and create areas to dispose of new dredge material. [6]
  • Low-crested rock sills are formed by the parallel arrangement and underwater placement of single rocks along shorelines and marshes. The rocks decrease erosion rates in these areas by dispelling oncoming wave energy. The placement of these sills are no greater than 6 to 12 inches over the mean high water mark and typically divided into sections to allow for the passing of boats, large waves and wildlife. [6]
  • Mangroves play a critical role in shoreline stabilization through the trapping of nutrients and sediments and dissipation of wave energy administered by their extensive root system. The incorporation of mangroves with living shorelines could play a large role in decreasing erosion rates since they naturally occur in subtropical and estuarine tropical areas. More specifically, mangroves are typically found in southern Florida, the Caribbean and some areas of southern Louisiana. [6]
  • Marsh grasses are generally planted up to the mean high tide line and in the water of the intertidal zones to break up wave energy, provide fish and wildlife habitat and improve water quality through upland runoff filtration. Studies show that plantings may show more success when administered in the spring in areas with existing marsh, mild wind conditions and surrounding areas of less than 3 miles of open water. [6]
Coir fiber log installation FEMP 25 007 (27983144545).jpg
Coir fiber log installation
  • Natural bio-logs/fiber logs can be used to reduce bank erosion and stabilize inclines by implementation at the bottom of a slope or in the water which is formed to the bank line and secured in place. The coconut fiber and netting are biodegradable and work to grab sediment, hold moisture to facilitate vegetative growth, and allow stability of the bank while roots develop. [6]
  • Natural fiber matting can be made from a combination of biodegradable, organic mediums but is primarily made from jute, straw, coir fiber or wood. Placing such matting over an abrupt eroding slope minimizes sediment loss and catches sediments otherwise transported by wave dynamics. Natural fiber matting can also be implemented with riparian vegetation or marsh grass plantings to improve bank stabilization. [6]
  • Rock footers are small quantities of boulder or rock intended to enhance bank stabilization and add additional support to bio-logs. Rock footers can also be used to support the structure of the biodegradable fiber logs, so that they do not fall out into steeper areas of the bank. [6]
  • Rubble and recycled concrete can be used to form a breakwater offshore of a living shoreline site to refract wave energy before it hits the area. The addition of oyster spat these breakwaters can simultaneously enhance water quality and facilitate habitat growth. [6]

Submerged aquatic zone

  • Oyster shell reefs are another option when creating living shorelines. Oysters are critical in enhancing water quality and providing habitat to fish species, so creation of oyster reefs to decrease shoreline erosion rates have many added benefits. [6] In addition, the establishment of oyster reefs play a role in protecting valuable aquatic vegetation of the marine ecosystem. To ensure a healthy reef, only clean oyster shells that have been sitting in the sun for adequate time should be used in the construction process. [9]
  • Reef balls of oysters can achieve similar outcomes as oyster shell reefs but have a different implementation process. This type of artificial reef is made up of small, hallow concrete balls that facilitates the build-up of oyster shells as oyster spat take hold on the outside of the structure. An advantage of this implementation strategy is that it decreases poaching of oysters which can be a common obstacle in living shoreline construction that use oyster shells. [6] [10]
  • Seagrass beds create natural buffer zones against shoreline erosion when implemented in association with living shorelines. In addition, seagrass beds enhance water quality, improve sediment stabilization, supply habitat and food for aquatic organisms and dissipate high-energy waves. [6]

Project Examples

Related Research Articles

<span class="mw-page-title-main">Coastal erosion</span> Displacement of land along the coastline

Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms. The landward retreat of the shoreline can be measured and described over a temporal scale of tides, seasons, and other short-term cyclic processes. Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural.

<span class="mw-page-title-main">Salt marsh</span> Coastal ecosystem between land and open saltwater that is regularly flooded

A salt marsh, saltmarsh or salting, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

<span class="mw-page-title-main">Coastal management</span> Preventing flooding and erosion of shorelines

Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy.

<span class="mw-page-title-main">Erosion control</span> Practice of preventing soil erosion in agriculture and land development

Erosion control is the practice of preventing or controlling wind or water erosion in agriculture, land development, coastal areas, river banks and construction. Effective erosion controls handle surface runoff and are important techniques in preventing water pollution, soil loss, wildlife habitat loss and human property loss.

Hard engineering involves the construction of hydraulic structures to protect coasts from erosion. Such structures include seawalls, gabions, breakwaters, groynes and tetrapods.

Regarding the civil engineering of shorelines, soft engineering is a shoreline management practice that uses sustainable ecological principles to restore shoreline stabilization and protect riparian habitats. Soft Shoreline Engineering (SSE) uses the strategic placement of organic materials such as vegetation, stones, sand, debris, and other structural materials to reduce erosion, enhance shoreline aesthetic, soften the land-water interface, and lower costs of ecological restoration.

Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion.

<span class="mw-page-title-main">Sand dune stabilization</span> Coastal management practice

Sand dune stabilization is a coastal management practice designed to prevent erosion of sand dunes. Sand dunes are common features of shoreline and desert environments. Dunes provide habitat for highly specialized plants and animals, including rare and endangered species. They can protect beaches from erosion and recruit sand to eroded beaches. Dunes are threatened by human activity, both intentional and unintentional. Countries such as the United States, Australia, Canada, New Zealand, the United Kingdom, and Netherlands, operate significant dune protection programs.

<span class="mw-page-title-main">Coastal engineering</span> Branch of civil engineering

Coastal engineering is a branch of civil engineering concerned with the specific demands posed by constructing at or near the coast, as well as the development of the coast itself.

<span class="mw-page-title-main">Coastal Wetlands Planning, Protection and Restoration Act</span>

The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) was passed by Congress in 1990 to fund wetland enhancement. In cooperation with multiple government agencies, CWPPRA is moving forward to restore the lost wetlands of the Gulf Coast, as well as protecting the wetlands from future deterioration. The scope of the mission is not simply for the restoration of Louisiana's Wetlands, but also the research and implementation of preventative measures for wetlands preservation.

<span class="mw-page-title-main">Alluvial river</span> Type of river

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

<span class="mw-page-title-main">Ecological values of mangroves</span>

Mangrove ecosystems represent natural capital capable of producing a wide range of goods and services for coastal environments and communities and society as a whole. Some of these outputs, such as timber, are freely exchanged in formal markets. Value is determined in these markets through exchange and quantified in terms of price. Mangroves are important for aquatic life and home for many species of fish.

<span class="mw-page-title-main">Marine habitat</span> Habitat that supports marine life

A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

<span class="mw-page-title-main">Oyster reef restoration</span> Process of rebuilding or restoring of oyster reefs

Oyster reef restoration refers to the reparation and reconstruction of degraded oyster reefs. Environmental changes, modern fishing practices, over harvesting, water pollution, and other factors, have resulted in damage, disease, and ultimately, a large decline in global population and prevalence of oyster habitats. Aside from ecological importance, oyster farming is an important industry in many regions around the world. Both natural and artificial materials have been used in efforts to increase population and regenerate reefs.

The North Carolina Coastal Federation is a nonprofit organization that works with coastal residents and visitors to protect and restore the beautiful and productive N.C. coast. The four main areas in which the federation operates include: coastal advocacy; environmental education; habitat and water quality restoration and preservation; and support in the improvement and enforcement of environmental laws. The federation headquarters are located in Newport (Ocean), North Carolina, with regional offices in Wanchese and Wrightsville Beach, North Carolina. The federation is currently a member of Restore America's Estuaries (RAE).

<span class="mw-page-title-main">Billion Oyster Project</span> Citizen science project

Billion Oyster Project is a New York City-based nonprofit organization with the goal of engaging one million people in the effort to restore one billion oysters to New York Harbor by 2035. Because oysters are filter feeders, they serve as a natural water filter, with a number of beneficial effects for the ecosystem. The reefs they form increase habitat and subsequent marine biodiversity levels, and help protect the city's shorelines from storm surges.

<span class="mw-page-title-main">Oyster reef</span> Rock-like reefs, composed of dense aggregations of oysters

The term oyster reef refers to dense aggregations of oysters that form large colonial communities. Because oyster larvae need to settle on hard substrates, new oyster reefs may form on stone or other hard marine debris. Eventually the oyster reef will propagate by spat settling on the shells of older or nonliving oysters. The dense aggregations of oysters are often referred to as an oyster reef, oyster bed, oyster bank, oyster bottom, or oyster bar interchangeably. These terms are not well defined and often regionally restricted.

<span class="mw-page-title-main">Beaches in estuaries and bays</span> Type of beaches

Beaches in estuaries and bays (BEBs) refer to beaches that exist inside estuaries or bays and therefore are partially or fully sheltered from ocean wind waves, which are a typical source of energy to build beaches. Beaches located inside harbours and lagoons are also considered BEBs. BEBs can be unvegetated or partially unvegetated and can be made of sand, gravel or shells. As a consequence of the sheltering, the importance of other sources of wave energy, including locally generated wind waves and infragravity waves, may be more important for BEBs than for those beaches on the open coast. Boat wakes, currents driven by tides, and river inflow can also be important for BEBs. When BEBs receive insufficient wave energy, they can become inactive, and stabilised by vegetation; this may occur through both natural processes and human action. BEBs exist in all latitudes from beaches located in fjords and drowned river valleys (rias) in high latitudes to beaches located in the equatorial zone like, for example, the Amazon estuarine beaches.

The Tolomato River is a river in St. Johns County, Florida situated southwest of Vilano Beach and north of St. Augustine. It extends northward and meets the St. Augustine inlet. During the British Period of Florida's history (1763-1783), the Tolomato River was known as the North River, and it is still referred to by that name by many locals today.

<span class="mw-page-title-main">Geotextile tube</span>

A geotextile tube is a large, tube-shaped bag made of porous, weather-resistant geotextile and filled with a sand slurry, to form an artificial coastal structure such as a breakwaters, dune or levee. Geotextile tubes are a component of the living shorelines approach to coastal management. They are aligned with the shoreline to weaken wave energy and protect against coastal erosion. The tubes facilitate oyster reef development and create areas to dispose of new dredge material. Geotextile tubes are also installed for land reclamation and temporarily installed during the dewatering phase of a dredging operation.

References

  1. 1 2 3 "Living Shorelines". North Carolina Coastal Federation. 10 December 2014. Retrieved 20 May 2015.
  2. Kimberly Hirai (15 March 2011). "Re-engineering history: Softening the way we think about shorelines". Great Lakes Echo. Retrieved 7 January 2015.
  3. 1 2 "NOAA Habitat Conservation - Restoration Center - Restoration Techniques and Monitoring - Living Shorelines". Habitat.noaa.gov. Retrieved 17 September 2014.
  4. "Living Shorelines". Ccrm.vims.edu. Retrieved 17 September 2014.
  5. Isdell, Robert E.; Bilkovic, Donna Marie; Guthrie, Amanda G.; Mitchell, Molly M.; Chambers, Randolph M.; Leu, Matthias; Hershner, Carl (2021-08-13). "Living shorelines achieve functional equivalence to natural fringe marshes across multiple ecological metrics". PeerJ. 9: e11815. doi: 10.7717/peerj.11815 . ISSN   2167-8359. PMC   8366526 . PMID   34447620.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 "NOAA Habitat Conservation - Restoration Center - Restoration Techniques and Monitoring - Living Shorelines Implementation". Habitat.noaa.gov. Archived from the original on 9 October 2014. Retrieved 17 September 2014.
  7. "Living Shorelines". Jefpat.org\accessdate=7 January 2015.
  8. "Living Shorelines for the Bays" (PDF). Inlandbays.org. Retrieved 7 January 2015.
  9. "Living Shorelines". Ccrm.vims.edu. Retrieved 17 September 2014.
  10. "Chesapeake Bay Foundation - Saving a National Treasure - Chesapeake Bay Foundation". Cbf.org. Archived from the original on 2010-12-13. Retrieved 17 September 2014.
  11. "Application of Living Shorelines in the Chesapeake Bay Region" (PDF). Dep.state.fl.usd. Retrieved 7 January 2015.
  12. O’Brien, David. "Living Shorelines; A Different Approach to Erosion Protection to Improve Aquatic Habitat". NOAA Fisheries Greater Atlantic Region. NOAA. Retrieved 20 May 2015.
  13. Duhring, Karen A. "Living Shoreline Projects: 2009 Updates" (PDF). Virginia Institute of Marine Science. VIMS. Retrieved 20 May 2015.
  14. 1 2 3 4 "Living Shorelines Projects". Ccrm.vims.edu. Retrieved 17 September 2014.
  15. https://web.archive.org/web/20120623051630/http://www.capitalgazette.com/maryland_gazette/news/environment/living-shoreline-project-under-way-in-magothy/article_04ee24c1-3fe8-5295-a49e-e9ebd99f07d0.html. Archived from the original on June 23, 2012. Retrieved July 23, 2014.{{cite web}}: Missing or empty |title= (help)
  16. https://web.archive.org/web/20120815093802/http://www.sfestuary.org/projects/detail2.php?projectID=45. Archived from the original on August 15, 2012. Retrieved July 23, 2014.{{cite web}}: Missing or empty |title= (help)
  17. "Piscataway Park Living Shoreline Restoration « Alice Ferguson Foundation" . Retrieved July 23, 2014.[ dead link ]
  18. "Delaware Estuary Living Shoreline Initiative" (PDF). Delawareestuary.org. Archived from the original (PDF) on 2012-10-16. Retrieved 7 January 2015.