The topic of this article may not meet Wikipedia's notability guidelines for products and services . (August 2014) (Learn how and when to remove this template message) |
This article does not cite any sources . (August 2014) (Learn how and when to remove this template message) |
The MPC5xx family of processors such as the MPC555 and MPC565 are 32-bit PowerPC embedded microprocessors that operate between 40 and 66 MHz and are frequently used in automotive applications including engine and transmission controllers. Delphi Corporation use either the MPC561 or MPC565 in the engine controllers they supply to General Motors, with nearly all 2009 model GM North America vehicles now using an MPC5xx in the engine controller. Bosch also used the MPC5xx throughout the ME(D)-9 series of Gasoline Engine Controllers, EDC-16 series of Diesel Engine Controllers as did the Cummins B series diesel engine ECU.
They are generally considered microcontrollers because of their integrated peripheral set and their unusual architecture: no MMU, large on-chip SRAM and very large (as much as 1 MB) low latency access on-chip flash memories, which means their architecture is tailored to control applications. Instead of a block-address translation and a hardware-driven, fixed-page address translation prescribed by the first PowerPC specification, the 5xx cores provided a software-driven translation mechanism that supported variable page sizes. This model is the basis for the embedded MMU model in the current Power ISA specification.
MPC5xx – All PowerPC 5xx family processors share this common naming scheme.
The development of the PowerPC 5xx family is discontinued in favour for the more flexible and powerful PowerPC 55xx family.
The peripherals on each model vary, but frequently include analog-to-digital converters (ADC), Time Processor Units (TPU), GPIO, and UARTS/serial (QSMCM). The MPC5xx family descends from the MPC8xx PowerQUICC family core, which means it uses a Harvard architecture, single issue core. Unlike the 8xx family, the 5xx variants have a floating point unit. While some of the earlier chips like the MPC509 had an instruction cache, the recent chips have the capability to contain large amounts of NOR flash memory on-board which is capable of bursting instructions to the processor. Some low-cost chips omit the flash memory because it adds a lot of die area, driving up the price of the chip. Many controller applications run very long control loops where there is not a large dataset and low latency, deterministic access to both data and instruction routines is more important. If most of the data can be stored in the on-chip SRAM available to the datapath of the processor in a single cycle, performance can be quite good. If data must be accessed off-chip frequently, performance can be reduced because the chip cannot burst data accesses from external RAM and has a very slow bus access protocol. Because of the simple memory interface that can be programmed by setting a default memory location and writing a few base registers, the chips are quite popular with hobbyists as well as with automotive and industrial developers.
The Motorola 68060 ("sixty-eight-oh-sixty") is a 32-bit microprocessor from Motorola released in 1994. It is the successor to the Motorola 68040 and is the highest performing member of the 68000 series. Two derivatives were produced, the 68LC060 and the 68EC060.
A microcontroller is a small computer on a single metal-oxide-semiconductor (MOS) integrated circuit chip. In modern terminology, it is similar to, but less sophisticated than, a system on a chip (SoC); an SoC may include a microcontroller as one of its components. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.
AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.
A system on chip is an integrated circuit that integrates all components of a computer or other electronic system. These components typically include a central processing unit (CPU), memory, input/output ports and secondary storage – all on a single substrate or microchip, the size of a coin. It may contain digital, analog, mixed-signal, and often radio frequency signal processing functions, depending on the application. As they are integrated on a single substrate, SoCs consume much less power and take up much less area than multi-chip designs with equivalent functionality. Because of this, SoCs are very common in the mobile computing and edge computing markets. Systems-on-chip are typically fabricated using metal–oxide–semiconductor (MOS) technology, and are commonly used in embedded systems and the Internet of Things.
PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1650 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.
The MSP430 is a mixed-signal microcontroller family from Texas Instruments. Built around a 16-bit CPU, the MSP430 is designed for low cost and, specifically, low power consumption embedded applications.
The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.
The PowerPC 400 family is a line of 32-bit embedded RISC processor cores based on the PowerPC or Power ISA instruction set architectures. The cores are designed to fit inside specialized applications ranging from system-on-a-chip (SoC) microcontrollers, network appliances, application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) to set-top boxes, storage devices and supercomputers.
The ETRAX CRIS is a series of CPUs designed and manufactured by Axis Communications for use in embedded systems since 1993. The name is an acronym of the chip's features: Ethernet, Token Ring, AXis - Code Reduced Instruction Set. Token ring support has been taken out from the latest chips as it has become obsolete.
The memory controller is a digital circuit that manages the flow of data going to and from the computer's main memory. A memory controller can be a separate chip or integrated into another chip, such as being placed on the same die or as an integral part of a microprocessor; in the latter case, it is usually called an integrated memory controller (IMC). A memory controller is sometimes also called a memory chip controller (MCC) or a memory controller unit (MCU).
PowerQUICC is the name for several PowerPC- and Power ISA-based microcontrollers from Freescale Semiconductor. They are built around one or more PowerPC cores and the Communications Processor Module which is a separate RISC core specialized in such tasks such as I/O, communications, ATM, security acceleration, networking and USB. Many components are System-on-a-chip designs tailor made for embedded applications.
The PowerPC e200 is a family of 32-bit Power ISA microprocessor cores developed by Freescale for primary use in automotive and industrial control systems. The cores are designed to form the CPU part in system-on-a-chip (SoC) designs with speed ranging up to 600 MHz, thus making them ideal for embedded applications.
The PowerPC e600 is a family of 32-bit PowerPC microprocessor cores developed by Freescale for primary use in high performance system-on-a-chip (SoC) designs with speed ranging over 2 GHz, thus making them ideal for high performance routing and telecommunications applications. The e600 is the continuation of the PowerPC 74xx design.
The PowerPC 5000 family is a series of PowerPC and Power ISA microprocessors from Freescale and STMicroelectronics designed for automotive and industrial microcontroller and system on a chip (SoC) use. The MPC5000 family consists of two lines that really don't share a common heritage.
The PowerPC e500 is a 32-bit microprocessor core from Freescale Semiconductor. The core is compatible with the older PowerPC Book E specification as well as the Power ISA v.2.03. It has a dual issue, seven-stage pipeline with FPUs, 32/32 KiB data and instruction L1 caches and 256, 512 or 1024 KiB L2 frontside cache. Speeds range from 533 MHz up to 1.5 GHz, and the core is designed to be highly configurable and meet the specific needs of embedded applications with features like multi-core operation interface for auxiliary application processing units (APU).
QorIQ is a brand of ARM-based and Power ISA-based communications microprocessors from NXP Semiconductors. It is the evolutionary step from the PowerQUICC platform and initial products were built around one or more e500mc cores and came in five different product platforms, P1, P2, P3, P4 and P5, segmented by performance and functionality. The platform keeps software compatibility with older PowerPC products such as the PowerQUICC platform. In 2012 Freescale announced ARM based QorIQ offerings beginning in 2013.
STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32 chips are grouped into related series that are based around the same 32-bit ARM processor core, such as the Cortex-M33F, Cortex-M7F, Cortex-M4F, Cortex-M3, Cortex-M0+, or Cortex-M0. Internally, each microcontroller consists of the processor core, static RAM, flash memory, debugging interface, and various peripherals.
The MSP432 is a mixed-signal microcontroller family from Texas Instruments. It is based on a 32-bit ARM Cortex-M4F CPU, and extends their 16-bit MSP430 line, with a larger address space for code and data, and faster integer and floating point calculation than the MSP430. Like the MSP430, it has a number of built-in peripheral devices, and is designed for low power requirements.