Mechanism of autism

Last updated

The mechanisms of autism are the molecular and cellular processes believed to cause or contribute to the symptoms of autism. Multiple processes are hypothesized to explain different autism spectrum features. These hypotheses include defects in synapse structure and function, [1] [2] reduced synaptic plasticity, [3] disrupted neural circuit function, gut–brain axis dyshomeostasis, [4] [5] [6] neuroinflammation, [7] and altered brain structure or connectivity. [8] [9] [10] [11]

Contents

Pathophysiology

The amygdala, cerebellum, and many other brain regions have been implicated in autism. Autismbrain.jpg
The amygdala, cerebellum, and many other brain regions have been implicated in autism.

Unlike some brain disorders which have clear molecular hallmarks that can be observed in every affected individual, such as Alzheimer's disease or Parkinson's disease, autism does not have a unifying mechanism at the molecular, cellular, or systems level. The autism spectrum may comprise a small set of disorders that converge on a few common molecular pathways, or it may be a large set of disorders with diverse mechanisms. [13] Autism appears to result from developmental factors that affect many or all functional brain systems. [14] Some factors may disturb the timing of brain development rather than the final product. [12]

Brain growth

Neuroanatomical studies and the association between autism and teratogens strongly suggest that autism affects brain development soon after conception. [15] This anomaly appears to start a cascade of pathological events in the brain that are significantly influenced by environmental factors. [16] Just after birth, the brains of children with autism tend to grow faster than usual, followed by normal or relatively slower growth in childhood. [17] It is unknown whether early brain overgrowth occurs in all children with autism. It appears to be most prominent in the frontal and temporal lobes, which are associated with higher cognitive specializations such as social cognition, and language development. [18] Hypotheses for the cellular and molecular bases of pathological early overgrowth include an excess of neurons that causes local overconnectivity in key brain regions, [17] and disturbed neuronal migration during early gestation. [19] [20]

Synapse dysfunction

Synapse and dendritic spine growth may be disrupted in autism due to impaired neurexinneuroligin cell-adhesion signaling [21] or dysregulated synthesis of synaptic proteins. [22] [23] Disrupted synaptic development may also contribute to epilepsy, which may explain why the two conditions are associated. [24] Studies have suggested that excitatory–inhibitory networks may be imbalanced in autism. [20]

Neurotransmitters such as serotonin, dopamine, and glutamate have been implicated in autism. [1] Fragile X, the most common genetic cause of autism, is linked to dysfunction of group I metabotropic glutamate receptors (mGluR), leading some to consider their potential role in autism. [25]

Altered circuit connectivity

Autistic individuals tend to use different brain areas (yellow) for a movement task compared to a control group (blue). Powell2004Fig1A.jpeg
Autistic individuals tend to use different brain areas (yellow) for a movement task compared to a control group (blue).

The underconnectivity theory of autism posits that autistic people tend to have fewer high-level neural connections and less global synchronization, along with an excess of low-level processes. [27] Functional connectivity studies have found both hypo- and hyperconnectivity in brains of autistic people. [28] Hypoconnectivity is commonly observed for interhemispheric and cortico-cortical functional connectivity. [29] Some studies have found local overconnectivity in the cerebral cortex and weak functional connections between the frontal lobe and the rest of the cortex. [30] Abnormal default mode network (task-negative) connectivity is often observed. Toggling between task-negative network activation and task-positive network activation (consisting of the dorsal attention network and salience network) may be less efficient, possibly reflecting a disturbance of self-referential thought. [31] Such patterns of low function and aberrant activation in the brain may depend on whether the brain is performing social or nonsocial tasks. [32]

Some studies have suggested that autism is a disorder of the association cortex. [33] Event-related potentials with respect to attention, orientation to auditory and visual stimuli, novelty detection, language and face processing, and information storage are altered in autistic individuals; several studies have found a preference for nonsocial stimuli. [34] Magnetoencephalography studies have observed delayed processing of auditory signals in autistic children. [35]

The mirror neuron system (MNS) theory of autism hypothesizes that disrupted development of the MNS impairs autistic people's ability to imitate others, leading to core autistic features of social impairment and communication difficulties. In animals, the MNS activates when an animal performs an action or observes another animal perform the same action. The MNS may contribute to an individual's understanding of other people by enabling the modeling of their behavior via embodied simulation of their actions, intentions, and emotions. [36] [37] Several studies have tested this hypothesis by demonstrating structural abnormalities in MNS regions of individuals with ASD, delay in the activation in the core circuit for imitation in individuals with ASD, and a correlation between reduced MNS activity and severity of the syndrome in children with ASD. [38] However, individuals with autism also have abnormal brain activation in many circuits outside the MNS [39] and the MNS theory does not explain the normal performance of children with autism on imitation tasks that involve a goal or object. [40]

Common copy number variation associations have suggested similarities between the mechanisms of autism and schizophrenia. For loci such as 16p11.2, 16p13.1, 22p11, and 22q13, deletion is associated with autism whereas duplication is associated with schizophrenia. Conversely, 1q21.1 and 22p11.2 duplication is associated with autism and deletion with schizophrenia. [41]

Inflammation

The immune system is thought to play an important role in autism. Children with autism have been found by researchers to have inflammation of both the peripheral and central immune systems as indicated by increased levels of pro-inflammatory cytokines and significant activation of microglia. [42] [43] [7] Biomarkers of abnormal immune function have also been associated with increased impairments in behaviors that are characteristic of the core features of autism such as, deficits in social interactions and communication. [43] Interactions between the immune system and the nervous system begin early during the embryonic stage of life, and successful neurodevelopment depends on a balanced immune response. It is thought that activation of a pregnant mother's immune system such as from environmental toxicants or infection can contribute to causing autism through causing a disruption of brain development. [44] [45] [46] This is supported by recent studies that have found that infection during pregnancy is associated with an increased risk of autism. [47] [48]

Some evidence suggests that gut–brain axis abnormalities may be involved by means of impaired serotonin signaling and inflammation. [6] A 2015 review proposed that immune dysregulation, gastrointestinal inflammation, autonomic nervous system malfunction, gut microbiota alterations, and food metabolites may cause brain neuroinflammation and dysfunction. [4] A 2016 review concluded that enteric nervous system abnormalities might play a role in neurological disorders such as autism. [5]

Metabolism

Some data suggests neuronal overgrowth observed in autism may be caused by an increase in several growth hormones [49] or impaired regulation of growth factor receptors. Some inborn errors of metabolism are associated with autism, but probably account for less than 5% of cases. [50]

Neuropsychology

Two major categories of cognitive theories have been proposed to explain links between autistic brains and behavior.

Social cognition

The first category focuses on deficits in social cognition. Simon Baron-Cohen's empathizing–systemizing theory postulates that autistic individuals can systemize—that is, they can develop internal rules of operation to handle events inside the brain—but are less effective at empathizing by handling events generated by other agents. An extension, the extreme male brain theory, hypothesizes that autism is an extreme case of the male brain, defined psychometrically as individuals in whom systemizing is better than empathizing. [51] These theories are somewhat related to Baron-Cohen's earlier theory of mind approach, which hypothesizes that autistic behavior arises from an inability to ascribe mental states to oneself and others. The theory of mind hypothesis is supported by the atypical responses of children with autism to the Sally–Anne test for reasoning about others' motivations, [51] and the mirror neuron system theory of autism described in Pathophysiology maps well to the hypothesis. [38] However, most studies have found no evidence of impairment in autistic individuals' ability to understand other people's basic intentions or goals; instead, data suggests that impairments are found in understanding more complex social emotions or in considering others' viewpoints. [52]

Nonsocial cognition

The second category focuses on nonsocial or general processing: the executive functions such as working memory, planning, inhibition. In his review, Kenworthy states that "the claim of executive dysfunction as a causal factor in autism is controversial", however, "it is clear that executive dysfunction plays a role in the social and cognitive deficits observed in individuals with autism". [53] Tests of core executive processes such as eye movement tasks indicate improvement from late childhood to adolescence, but performance never reaches typical adult levels. [54] A strength of the theory is predicting stereotyped behavior and narrow interests; [55] two weaknesses are that executive function is hard to measure [53] and that executive function deficits have not been found in young children with autism. [56]

Weak central coherence theory

Weak central coherence theory hypothesizes that a limited ability to see the big picture underlies the central disturbance in autism. One strength of this theory is predicting special talents and peaks in performance in autistic people. [57] A related theory—enhanced perceptual functioning—focuses more on the superiority of locally oriented and perceptual operations in autistic individuals. [58] Yet another, monotropism, posits that autism stems from a different cognitive style, tending to focus attention (or processing resources) intensely, to the exclusion of other stimuli. [59] These theories map well from the underconnectivity theory of autism.

Issues with categories

Neither category is satisfactory on its own; social cognition theories poorly address autism's rigid and repetitive behaviors, while most of the nonsocial theories have difficulty explaining social impairment and communication difficulties. [60] A combined theory based on multiple deficits may prove to be more useful. [61]

Related Research Articles

<span class="mw-page-title-main">Asperger syndrome</span> Neurodevelopmental diagnosis now categorized under ASD

Asperger syndrome (AS), also known as Asperger's syndrome, formerly described a neurodevelopmental disorder characterized by significant difficulties in social interaction and nonverbal communication combined with restricted and repetitive patterns of behavior and interests. The syndrome has been merged with other disorders into autism spectrum disorder (ASD) and is no longer considered a stand-alone diagnosis. It was considered to differ from other diagnoses that were merged into ASD by relatively unimpaired spoken language and intelligence.

In psychology, theory of mind refers to the capacity to understand other people by ascribing mental states to them. A theory of mind includes the knowledge that others' beliefs, desires, intentions, emotions, and thoughts may be different from one's own. Possessing a functional theory of mind is crucial for success in everyday human social interactions. People utilise a theory of mind when analyzing, judging, and inferring others' behaviors. The discovery and development of theory of mind primarily came from studies done with animals and infants. Factors including drug and alcohol consumption, language development, cognitive delays, age, and culture can affect a person's capacity to display theory of mind. Having a theory of mind is similar to but not identical with having the capacity for empathy or sympathy.

<span class="mw-page-title-main">Controversies in autism</span> Controversies about both the cause of autism and the nature of the diagnoses themselves

Diagnoses of autism have become more frequent since the 1980s, which has led to various controversies about both the cause of autism and the nature of the diagnoses themselves. Whether autism has mainly a genetic or developmental cause, and the degree of coincidence between autism and intellectual disability, are all matters of current scientific controversy as well as inquiry. There is also more sociopolitical debate as to whether autism should be considered a disability on its own.

Autism spectrum disorders (ASD) are neurodevelopmental disorders that begin in early childhood, persist throughout adulthood, and affect three crucial areas of development: communication, social interaction and restricted patterns of behavior. There are many conditions comorbid to autism spectrum disorders such as attention-deficit hyperactivity disorder and epilepsy.

A mirror neuron is a neuron that fires both when an organism acts and when the organism observes the same action performed by another. Thus, the neuron "mirrors" the behavior of the other, as though the observer were itself acting. Mirror neurons are not always physiologically distinct from other types of neurons in the brain; their main differentiating factor is their response patterns. By this definition, such neurons have been directly observed in humans and primate species, and in birds.

Mind-blindness, mindblindness or mind blindness is a theory initially proposed in 1990 that claims that all autistic people have a lack or developmental delay of theory of mind (ToM), meaning they are unable to attribute mental states to others. According to the theory, a lack of ToM is considered equivalent to a lack of both cognitive and affective empathy. In the context of the theory, mind-blindness implies being unable to predict behavior and attribute mental states including beliefs, desires, emotions, or intentions of other people. The mind-blindness theory asserts that children who delay in this development will often develop autism.

<span class="mw-page-title-main">Causes of autism</span> Proposed causes of autism

The causes of autism are environmental or genetic factors that predispose an individual to develop autism, also known as autism spectrum disorder (ASD). Many causes of autism have been proposed, but understanding of the theory of causation of autism is incomplete. Attempts have been made to incorporate the known genetic and environmental causes into a comprehensive causative framework. ASD is a neurodevelopmental disorder marked by impairments in communicative ability and social interaction and restricted/repetitive behaviors, interests, or activities not suitable for the individual's developmental stage. The severity of symptoms and functional impairment vary between individuals.

<span class="mw-page-title-main">Mu wave</span> Electrical activity in the part of the brain controlling voluntary movement

The sensorimotor mu rhythm, also known as mu wave, comb or wicket rhythms or arciform rhythms, are synchronized patterns of electrical activity involving large numbers of neurons, probably of the pyramidal type, in the part of the brain that controls voluntary movement. These patterns as measured by electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography (ECoG), repeat at a frequency of 7.5–12.5 Hz, and are most prominent when the body is physically at rest. Unlike the alpha wave, which occurs at a similar frequency over the resting visual cortex at the back of the scalp, the mu rhythm is found over the motor cortex, in a band approximately from ear to ear. People suppress mu rhythms when they perform motor actions or, with practice, when they visualize performing motor actions. This suppression is called desynchronization of the wave because EEG wave forms are caused by large numbers of neurons firing in synchrony. The mu rhythm is even suppressed when one observes another person performing a motor action or an abstract motion with biological characteristics. Researchers such as V. S. Ramachandran and colleagues have suggested that this is a sign that the mirror neuron system is involved in mu rhythm suppression, although others disagree.

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.

In psychology and neuroscience, executive dysfunction, or executive function deficit, is a disruption to the efficacy of the executive functions, which is a group of cognitive processes that regulate, control, and manage other cognitive processes. Executive dysfunction can refer to both neurocognitive deficits and behavioural symptoms. It is implicated in numerous psychopathologies and mental disorders, as well as short-term and long-term changes in non-clinical executive control. Executive dysfunction is the mechanism underlying ADHD Paralysis, and in a broader context, it can encompass other cognitive difficulties like planning, organizing, initiating tasks and regulating emotions. It is a core characteristic of ADHD and can elucidate numerous other recognized symptoms.

<span class="mw-page-title-main">Classic autism</span> Neurodevelopmental condition

Classic autism, also known as childhood autism, autistic disorder, (early) infantile autism, infantile psychosis, Kanner's autism,Kanner's syndrome, or (formerly) just autism, is a neurodevelopmental condition first described by Leo Kanner in 1943. It is characterized by atypical and impaired development in social interaction and communication as well as restricted, repetitive behaviors, activities, and interests. These symptoms first appear in early childhood and persist throughout life.

<span class="mw-page-title-main">Autism spectrum</span> Neurodevelopmental disorder

Autism, formally called autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental disorder characterized by deficits in social communication and social interaction, and repetitive or restricted patterns of behaviors, interests, or activities, which can include hyper- and hyporeactivity to sensory input. Autism is clinically regarded as a spectrum disorder, meaning that it can manifest very differently in each person. For example, some are nonverbal, while others have proficient spoken language. Because of this, there is wide variation in the support needs of people across the autism spectrum.

<span class="mw-page-title-main">Imprinted brain hypothesis</span> Conjecture on the causes of autism and psychosis

The imprinted brain hypothesis is an unsubstantiated hypothesis in evolutionary psychology regarding the causes of autism spectrum and schizophrenia spectrum disorders, first presented by Bernard Crespi and Christopher Badcock in 2008. It claims that certain autistic and schizotypal traits are opposites, and that this implies the etiology of the two conditions must be at odds.

The evolution of schizophrenia refers to the theory of natural selection working in favor of selecting traits that are characteristic of the disorder. Positive symptoms are features that are not present in healthy individuals but appear as a result of the disease process. These include visual and/or auditory hallucinations, delusions, paranoia, and major thought disorders. Negative symptoms refer to features that are normally present but are reduced or absent as a result of the disease process, including social withdrawal, apathy, anhedonia, alogia, and behavioral perseveration. Cognitive symptoms of schizophrenia involve disturbances in executive functions, working memory impairment, and inability to sustain attention.

This relationship between autism and memory, specifically memory functions in relation to Autism Spectrum Disorder (ASD), has been an ongoing topic of research. ASD is a neurodevelopmental disorder characterised by social communication and interaction impairments, along with restricted and repetitive patterns of behavior. In this article, the word autism is used to refer to the whole range of conditions on the autism spectrum, which are not uncommon.

Paul Ashwood is an associate professor of immunology at the MIND Institute at the University of California Davis. His lab conducts research regarding the potential role of immune system disorders in autism, as well as other neurodevelopmental disorders such as Fragile X syndrome, Tourette syndrome, schizophrenia and mood disorders.

The development of an animal model of autism is one approach researchers use to study potential causes of autism. Given the complexity of autism and its etiology, researchers often focus only on single features of autism when using animal models.

Sex and gender differences in autism exist regarding prevalence, presentation, and diagnosis.

Autism is characterized by the early onset of impairments in reciprocal social interaction and communication and restricted repetitive behaviors or interests. One of the many hypotheses explaining the psychopathology of autism, the deficit in joint attention hypothesis is prominent in explaining the disorder's social and communicative deficits. Nonverbal autism is a subset of autism spectrum where the person does not learn how to speak. It is estimated that 25% to 50% of children diagnosed with autism spectrum never develop spoken language beyond a few words or utterances.

The pathophysiology of autism is the study of the physiological processes that cause or are otherwise associated with autism spectrum disorders.

References

  1. 1 2 Levy SE, Mandell DS, Schultz RT (2009). "Autism". Lancet. 374 (9701): 1627–38. doi:10.1016/S0140-6736(09)61376-3. PMC   2863325 . PMID   19819542.
  2. Betancur C, Sakurai T, Buxbaum JD (2009). "The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders". Trends Neurosci . 32 (7): 402–12. doi:10.1016/j.tins.2009.04.003. PMC   10354373 . PMID   19541375. S2CID   8644511.
  3. Walsh CA, Morrow EM, Rubenstein JL (2008). "Autism and brain development". Cell . 135 (3): 396–400. doi:10.1016/j.cell.2008.10.015. PMC   2701104 . PMID   18984148.
  4. 1 2 Wasilewska J, Klukowski M (2015). "Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome". Pediatric Health Med Ther (Review). 6: 153–166. doi: 10.2147/PHMT.S85717 . PMC   5683266 . PMID   29388597.
  5. 1 2 Rao M, Gershon MD (September 2016). "The bowel and beyond: the enteric nervous system in neurological disorders". Nat Rev Gastroenterol Hepatol (Review). 13 (9): 517–28. doi:10.1038/nrgastro.2016.107. PMC   5005185 . PMID   27435372.
  6. 1 2 Israelyan N, Margolis KG (2018). "Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders". Pharmacol Res (Review). 132: 1–6. doi:10.1016/j.phrs.2018.03.020. PMC   6368356 . PMID   29614380.
  7. 1 2 Rossignol DA, Frye RE (2014). "Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism". Frontiers in Physiology. 5: 150. doi: 10.3389/fphys.2014.00150 . PMC   4001006 . PMID   24795645.
  8. Sarovic D (November 2021). "A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework". Frontiers in Psychiatry (Review). 12: 767075. doi: 10.3389/fpsyt.2021.767075 . PMC   8637925 . PMID   34867553. S2CID   244119594.
  9. Penn HE (2006). "Neurobiological correlates of autism: a review of recent research". Child Neuropsychol. 12 (1): 57–79. doi:10.1080/09297040500253546. PMID   16484102. S2CID   46119993.
  10. London E (2007). "The role of the neurobiologist in redefining the diagnosis of autism". Brain Pathol. 17 (4): 408–11. doi:10.1111/j.1750-3639.2007.00103.x. PMC   8095627 . PMID   17919126. S2CID   24860348.
  11. Baird G, Cass H, Slonims V (2003). "Diagnosis of autism". BMJ. 327 (7413): 488–93. doi:10.1136/bmj.327.7413.488. PMC   188387 . PMID   12946972.
  12. 1 2 Amaral DG, Schumann CM, Nordahl CW (2008). "Neuroanatomy of autism". Trends Neurosci. 31 (3): 137–45. doi:10.1016/j.tins.2007.12.005. PMID   18258309. S2CID   18648870.
  13. Geschwind DH (2008). "Autism: many genes, common pathways?". Cell. 135 (3): 391–95. doi:10.1016/j.cell.2008.10.016. PMC   2756410 . PMID   18984147.
  14. Müller RA (2007). "The study of autism as a distributed disorder". Ment Retard Dev Disabil Res Rev. 13 (1): 85–95. doi:10.1002/mrdd.20141. PMC   3315379 . PMID   17326118.
  15. Arndt TL, Stodgell CJ, Rodier PM (2005). "The teratology of autism". Int J Dev Neurosci . 23 (2–3): 189–99. doi:10.1016/j.ijdevneu.2004.11.001. PMID   15749245. S2CID   17797266.
  16. Casanova MF (2007). "The neuropathology of autism". Brain Pathol. 17 (4): 422–33. doi: 10.1111/j.1750-3639.2007.00100.x . PMC   8095561 . PMID   17919128. S2CID   6959302.
  17. 1 2 Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J (2007). "Mapping early brain development in autism". Neuron. 56 (2): 399–413. doi: 10.1016/j.neuron.2007.10.016 . PMID   17964254. S2CID   10662307.
  18. Geschwind DH (2009). "Advances in autism". Annu Rev Med. 60: 367–80. doi:10.1146/annurev.med.60.053107.121225. PMC   3645857 . PMID   19630577.
  19. Schmitz C, Rezaie P (2008). "The neuropathology of autism: where do we stand?". Neuropathol Appl Neurobiol. 34 (1): 4–11. doi:10.1111/j.1365-2990.2007.00872.x. PMID   17971078. S2CID   23551620.
  20. 1 2 Persico AM, Bourgeron T (2006). "Searching for ways out of the autism maze: genetic, epigenetic and environmental clues". Trends Neurosci. 29 (7): 349–58. doi:10.1016/j.tins.2006.05.010. PMID   16808981. S2CID   26722022.
  21. Südhof TC (2008). "Neuroligins and neurexins link synaptic function to cognitive disease". Nature. 455 (7215): 903–11. Bibcode:2008Natur.455..903S. doi:10.1038/nature07456. PMC   2673233 . PMID   18923512.
  22. Kelleher RJ, Bear MF (2008). "The autistic neuron: troubled translation?". Cell. 135 (3): 401–06. doi: 10.1016/j.cell.2008.10.017 . PMID   18984149. S2CID   619383.
  23. Bear MF, Dölen G, Osterweil E, Nagarajan N (2008). "Fragile X: translation in action". Neuropsychopharmacology. 33 (1): 84–7. doi: 10.1038/sj.npp.1301610 . PMC   4327813 . PMID   17940551.
  24. Tuchman R, Moshé SL, Rapin I (2009). "Convulsing toward the pathophysiology of autism". Brain Dev. 31 (2): 95–103. doi:10.1016/j.braindev.2008.09.009. PMC   2734903 . PMID   19006654.
  25. Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007). "Correction of fragile X syndrome in mice". Neuron. 56 (6): 955–62. doi:10.1016/j.neuron.2007.12.001. PMC   2199268 . PMID   18093519.
  26. Powell K (2004). "Opening a window to the autistic brain". PLOS Biol. 2 (8): E267. doi: 10.1371/journal.pbio.0020267 . PMC   509312 . PMID   15314667.
  27. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007). "Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry". Cereb Cortex. 17 (4): 951–61. doi:10.1093/cercor/bhl006. PMC   4500121 . PMID   16772313.
  28. Williams DL, Goldstein G, Minshew NJ (2006). "Neuropsychologic functioning in children with autism: further evidence for disordered complex information-processing". Child Neuropsychol. 12 (4–5): 279–98. doi:10.1080/09297040600681190. PMC   1803025 . PMID   16911973.
  29. Ha S, Sohn IJ, Kim N, Sim HJ, Cheon KA (December 2015). "Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan". Exp Neurobiol (Review). 24 (4): 273–84. doi:10.5607/en.2015.24.4.273. PMC   4688328 . PMID   26713076.
  30. Murias M, Webb SJ, Greenson J, Dawson G (2007). "Resting state cortical connectivity reflected in EEG coherence in individuals with autism". Biol Psychiatry. 62 (3): 270–73. doi:10.1016/j.biopsych.2006.11.012. PMC   2001237 . PMID   17336944.
  31. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009). "Default-mode brain dysfunction in mental disorders: a systematic review". Neurosci Biobehav Rev. 33 (3): 279–96. doi:10.1016/j.neubiorev.2008.09.002. PMID   18824195. S2CID   7175805.
  32. Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP (2009). "Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis". Biol Psychiatry. 65 (1): 63–74. doi:10.1016/j.biopsych.2008.09.022. PMC   2993772 . PMID   18996505.
  33. Minshew NJ, Williams DL (2007). "The new neurobiology of autism: cortex, connectivity, and neuronal organization". Arch Neurol. 64 (7): 945–50. doi:10.1001/archneur.64.7.945. PMC   2597785 . PMID   17620483.
  34. Jeste SS, Nelson CA (2009). "Event related potentials in the understanding of autism spectrum disorders: an analytical review". J Autism Dev Disord. 39 (3): 495–510. doi:10.1007/s10803-008-0652-9. PMC   4422389 . PMID   18850262.
  35. Roberts TP, Schmidt GL, Egeth M, Blaskey L, Rey MM, Edgar JC, Levy SE (2008). "Electrophysiological signatures: magnetoencephalographic studies of the neural correlates of language impairment in autism spectrum disorders". Int J Psychophysiol. 68 (2): 149–60. doi:10.1016/j.ijpsycho.2008.01.012. PMC   2397446 . PMID   18336941.
  36. Williams JH (2008). "Self–other relations in social development and autism: multiple roles for mirror neurons and other brain bases". Autism Res. 1 (2): 73–90. doi:10.1002/aur.15. PMID   19360654. S2CID   15269399.
  37. Dinstein I, Thomas C, Behrmann M, Heeger DJ (2008). "A mirror up to nature". Curr Biol. 18 (1): R13–18. doi:10.1016/j.cub.2007.11.004. PMC   2517574 . PMID   18177704.
  38. 1 2 Iacoboni M, Dapretto M (2006). "The mirror neuron system and the consequences of its dysfunction". Nature Reviews Neuroscience. 7 (12): 942–51. doi:10.1038/nrn2024. PMID   17115076. S2CID   9463011.
  39. Frith U, Frith CD (2003). "Development and neurophysiology of mentalizing". Philosophical Transactions of the Royal Society B. 358 (1431): 459–73. doi:10.1098/rstb.2002.1218. PMC   1693139 . PMID   12689373.
  40. Hamilton AF (2008). "Emulation and mimicry for social interaction: a theoretical approach to imitation in autism". Q J Exp Psychol. 61 (1): 101–15. doi:10.1080/17470210701508798. PMID   18038342. S2CID   14569936.
  41. Crespi B, Stead P, Elliot M (2010). "Evolution in health and medicine Sackler colloquium: Comparative genomics of autism and schizophrenia". Proceedings of the National Academy of Sciences of the United States of America. 107 (Suppl 1): 1736–41. Bibcode:2010PNAS..107.1736C. doi: 10.1073/pnas.0906080106 . PMC   2868282 . PMID   19955444.
  42. Hsiao EY (2013). "Immune Dysregulation in Autism Spectrum Disorder". Neurobiology of Autism. International Review of Neurobiology. Vol. 113. pp. 269–302. doi:10.1016/B978-0-12-418700-9.00009-5. ISBN   9780124187009. PMID   24290389.
  43. 1 2 Onore C, Careaga M, Ashwood P (August 2011). "The role of immune dysfunction in the pathophysiology of autism". Brain, Behavior, and Immunity. 26 (3): 383–92. doi:10.1016/j.bbi.2011.08.007. PMC   3418145 . PMID   21906670.
  44. Patterson PH (July 2011). "Maternal infection and immune involvement in autism". Trends in Molecular Medicine. 17 (7): 389–94. doi:10.1016/j.molmed.2011.03.001. PMC   3135697 . PMID   21482187.
  45. Chaste P, Leboyer M (2012). "Autism risk factors: genes, environment, and gene-environment interactions". Dialogues Clin Neurosci. 14 (3): 281–92. doi:10.31887/DCNS.2012.14.3/pchaste. PMC   3513682 . PMID   23226953.
  46. Ashwood P, Wills S, Van de Water J (2006). "The immune response in autism: a new frontier for autism research". J Leukoc Biol. 80 (1): 1–15. CiteSeerX   10.1.1.329.777 . doi:10.1189/jlb.1205707. PMID   16698940. S2CID   17531542. Archived from the original on 5 October 2006.
  47. Lee BK, Magnusson C, Gardner RM, Blomström S, Newschaffer CJ, Burstyn I, Karlsson H, Dalman C (September 2014). "Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders". Brain, Behavior, and Immunity. 44: 100–105. doi:10.1016/j.bbi.2014.09.001. PMC   4418173 . PMID   25218900.
  48. Atladóttir HO, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (December 2010). "Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders". Journal of Autism and Developmental Disorders. 40 (12): 1423–30. doi:10.1007/s10803-010-1006-y. PMID   20414802. S2CID   23471371.
  49. Hughes JR (2009). "Update on autism: A review of 1300 reports published in 2008". Epilepsy Behav. 16 (4): 569–89. doi:10.1016/j.yebeh.2009.09.023. PMID   19896907. S2CID   8013774.
  50. Manzi B, Loizzo AL, Giana G, Curatolo P (2008). "Autism and metabolic diseases". J Child Neurol. 23 (3): 307–14. doi:10.1177/0883073807308698. PMID   18079313. S2CID   30809774.
  51. 1 2 Baron-Cohen S (2009). "Autism: the empathizing–systemizing (E-S) theory" (PDF). Annals of the New York Academy of Sciences. 1156 (1): 68–80. Bibcode:2009NYASA1156...68B. doi:10.1111/j.1749-6632.2009.04467.x. PMID   19338503. S2CID   1440395.
  52. Hamilton AF (2009). "Goals, intentions and mental states: challenges for theories of autism". J Child Psychol Psychiatry. 50 (8): 881–92. CiteSeerX   10.1.1.621.6275 . doi:10.1111/j.1469-7610.2009.02098.x. PMID   19508497.
  53. 1 2 Kenworthy L, Yerys BE, Anthony LG, Wallace GL (2008). "Understanding executive control in autism spectrum disorders in the lab and in the real world". Neuropsychol Rev. 18 (4): 320–38. doi:10.1007/s11065-008-9077-7. PMC   2856078 . PMID   18956239.
  54. O'Hearn K, Asato M, Ordaz S, Luna B (2008). "Neurodevelopment and executive function in autism". Dev Psychopathol. 20 (4): 1103–32. doi:10.1017/S0954579408000527. PMID   18838033. S2CID   33559397.
  55. Hill EL (2004). "Executive dysfunction in autism". Trends Cogn Sci. 8 (1): 26–32. doi:10.1016/j.dr.2004.01.001. PMID   14697400.
  56. Sigman M, Spence SJ, Wang AT (2006). "Autism from developmental and neuropsychological perspectives". Annual Review of Clinical Psychology. 2: 327–55. doi:10.1146/annurev.clinpsy.2.022305.095210. PMID   17716073.
  57. Happé F, Frith U (January 2006). "The weak coherence account: detail-focused cognitive style in autism spectrum disorders". Journal of Autism and Developmental Disorders. 36 (1): 5–25. doi:10.1007/s10803-005-0039-0. PMID   16450045. S2CID   14999943.
  58. Mottron L, Dawson M, Soulières I, Hubert B, Burack J (January 2006). "Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception". Journal of Autism and Developmental Disorders. 36 (1): 27–43. doi:10.1007/s10803-005-0040-7. PMID   16453071. S2CID   327253.
  59. Murray D, Lesser M, Lawson W (May 2005). "Attention, monotropism and the diagnostic criteria for autism" (PDF). Autism. 9 (2): 139–56. doi:10.1177/1362361305051398. PMID   15857859. S2CID   6476917. Archived from the original (PDF) on 19 May 2018. Retrieved 18 March 2018.
  60. Happé F, Ronald A, Plomin R (2006). "Time to give up on a single explanation for autism". Nature Neuroscience. 9 (10): 1218–20. doi:10.1038/nn1770. PMID   17001340. S2CID   18697986.
  61. Rajendran G, Mitchell P (2007). "Cognitive theories of autism" (PDF). Dev Rev. 27 (2): 224–60. doi:10.1016/j.dr.2007.02.001. S2CID   34448439.