Nuclear bodies (also known as nuclear domains or nuclear dots) are biomolecular condensates, membraneless structures found in the cell nuclei of eukaryotic cells. [1] Nuclear bodies include Cajal bodies, the nucleolus, nuclear speckles (also called splicing speckles), histone locus bodies, and promyelocytic leukemia protein (PML) nuclear bodies (also called PML oncogenic dots). [2] Nuclear bodies also include ND10s. ND stands for nuclear domain, and 10 refers to the number of dots seen. [3] Additionally, a nuclear body subtype is a clastosome suggested to be a site of protein degradation. [4]
While biomolecular condensate is a term often used interchangeably with nuclear bodies, the term "condensates" implies the thermodynamic properties of the body are known. [5] Thus, nuclear body (and sometimes nuclear compartment) is a term that is more general and encompasses structures where either the biophysical property is not a condensate or is currently untested. [6]
Nuclear bodies were first seen as prominent interchromatin structures in the nuclei of malignant or hyperstimulated animal cells [7] [8] identified using anti-sp100 autoantibodies from primary biliary cirrhosis and subsequently the promyelocytic leukemia (PML) factor, but appear also to be elevated in many autoimmune and cancerous diseases. [9] Nuclear dots are metabolically stable and resistant to nuclease digestion and salt extraction. [10]
Simple nuclear bodies (types I and II) and the shells of complex nuclear bodies (types III, IVa and V) consist of a non-chromatinic fibrillar material which is most likely proteinaceous. [11] That nuclear bodies co-isolated with the nuclear matrix, and were linked to the fibrogranular nuclear matrix component by projections from the surface of the nuclear bodies. [11] The primary components of the nuclear dots are the proteins sp100 nuclear antigen, LYSP100(a homolog of sp100), [12] ISG20, [13] PML antigen, NDP55 and 53kDa protein associated with the nuclear matrix. [14] Other proteins, such as PIC1/SUMO-1, which are associated with nuclear pore complex also associate with nuclear dots. [15] The proteins can reorganize in the nucleus, by increasing number of dispersion in response to different stress (stimulation or heat shock, respectively). [16]
One of the nuclear body proteins appears to be involved in transcriptional active regions. [17] Expression of PML antigen and sp100 is responsive to interferons. Sp100 seems to have transcriptional transactivating properties. PML protein was reported to suppress growth and transformation, [8] and specifically inhibits the infection of vesicular stomatitis virus (VSV) (a rhabdovirus) and influenza A virus, [18] but not other types of viruses. The SUMO-1 ubiquitin like protein is responsible for modifying PML protein such that it is targeted to dots. [19] whereas overexpression of PML results in programmed cell death. [20]
One hypothesized function of the dots is as a 'nuclear dump' or 'storage depot'. [21] The nuclear bodies may not all perform the same function. Sp140 associates with certain bodies and appears to be involved in transcriptional activation. [22]
ND10 nuclear bodies have been shown to play a major role in chromatin regulation. [23]
Nuclear bodies have been suggested to be involved in multiple aspects of gene regulation. By concentrating substrates and enzymes in these defined territories (i.e., pre-ribosomal RNA and associated ribosome biogenesis protein within the nucleolus), it is hypothesized that this may help increase the efficiency of the enzymatic reactions associated with the particular nuclear body. For example, nuclear speckles, once thought to be storage depots of splicing factors, have been now shown to concentrate splicing-promoting factors (e.g., components of the major and minor spliceosome) and pre-mRNA substrate molecules to boost the kinetic efficiency of the splicing reaction. [24] Thus future studies will show whether other nuclear bodies play functional roles in various aspects of gene regulation, such as transcription, RNA modifications, ribosome biogenesis, and other nuclear processes.
These, or similar, bodies have been found increased in the presence of lymphoid cancers [25] [26] and SLE (lupus). [27] They are also observed at higher frequencies in subacute sclerosing panencephalitis; in this instance, antibodies to measles show expression in and localization to the nuclear bodies. [28]
The cell nucleus is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm; and the nuclear matrix, a network within the nucleus that adds mechanical support.
Acute promyelocytic leukemia is a subtype of acute myeloid leukemia (AML), a cancer of the white blood cells. In APL, there is an abnormal accumulation of immature granulocytes called promyelocytes. The disease is characterized by a chromosomal translocation involving the retinoic acid receptor alpha (RARA) gene and is distinguished from other forms of AML by its responsiveness to all-trans retinoic acid therapy. Acute promyelocytic leukemia was first characterized in 1957 by French and Norwegian physicians as a hyperacute fatal illness, with a median survival time of less than a week. Today, prognoses have drastically improved; 10-year survival rates are estimated to be approximately 80-90% according to one study.
Human Herpes Virus (HHV) Infected Cell Polypeptide 0 (ICP0) is a protein, encoded by the DNA of herpes viruses. It is produced by herpes viruses during the earliest stage of infection, when the virus has recently entered the host cell; this stage is known as the immediate-early or α ("alpha") phase of viral gene expression. During these early stages of infection, ICP0 protein is synthesized and transported to the nucleus of the infected host cell. Here, ICP0 promotes transcription from viral genes, disrupts structures in the nucleus known as nuclear dots or promyelocytic leukemia (PML) nuclear bodies, and alters the expression of host and viral genes in combination with a neuron specific protein. At later stages of cellular infection, ICP0 relocates to the cell cytoplasm to be incorporated into new virion particles.
Death-associated protein 6 also known as Daxx is a protein that in humans is encoded by the DAXX gene.
Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.
The nuclear receptor co-repressor 1 also known as thyroid-hormone- and retinoic-acid-receptor-associated co-repressor 1 (TRAC-1) is a protein that in humans is encoded by the NCOR1 gene.
The nuclear receptor co-repressor 2 (NCOR2) is a transcriptional coregulatory protein that contains several nuclear receptor-interacting domains. In addition, NCOR2 appears to recruit histone deacetylases to DNA promoter regions. Hence NCOR2 assists nuclear receptors in the down regulation of target gene expression. NCOR2 is also referred to as a silencing mediator for retinoid or thyroid-hormone receptors (SMRT) or T3 receptor-associating cofactor 1 (TRAC-1).
The nuclear receptor 4A1 also known as Nur77, TR3, and NGFI-B is a protein that in humans is encoded by the NR4A1 gene.
Sp100 nuclear antigen is an interferon stimulated antigen found in the cell nuclei of many human and higher animal cells. Autoantibodies directed against Sp100 are often found in patients with primary biliary cirrhosis. Histologically Sp100 'dots' regions of the cell nucleus. Viral infection and mitogens affect the expression of the Sp100 autoantigen. Cells grown in the presence of interferons revealed an increase both in size and number of the Sp100 protein-containing nuclear dots and increase the protein concentration. This raises "the question whether cytokine-mediated increase of Sp100 protein expression plays a role in induction of anti-Sp100 autoantibodies."
Promyelocytic leukemia protein (PML) is the protein product of the PML gene. PML protein is a tumor suppressor protein required for the assembly of a number of nuclear structures, called PML-nuclear bodies, which form amongst the chromatin of the cell nucleus. These nuclear bodies are present in mammalian nuclei, at about 1 to 30 per cell nucleus. PML-NBs are known to have a number of regulatory cellular functions, including involvement in programmed cell death, genome stability, antiviral effects and controlling cell division. PML mutation or loss, and the subsequent dysregulation of these processes, has been implicated in a variety of cancers.
Retinoic acid receptor alpha (RAR-α), also known as NR1B1, is a nuclear receptor that in humans is encoded by the RARA gene.
Paired amphipathic helix protein Sin3a is a protein that in humans is encoded by the SIN3A gene.
Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.
Homeodomain-interacting protein kinase 2 is an enzyme that in humans is encoded by the HIPK2 gene. HIPK2 can be categorized as a Serine/Threonine Protein kinase, specifically one that interacts with homeodomain transcription factors. It belongs to a family of protein kinases known as the DYRK kinases. Within this family HIPK2 belongs to a group of homeodomain-interacting protein kinases (HIPKs), including HIPK1 and HIPK3. HIPK2 can be found in a wide variety of species and its functions in gene expression and apoptosis are regulated by several different mechanisms.
GATA2 or GATA-binding factor 2 is a transcription factor, i.e. a nuclear protein which regulates the expression of genes. It regulates many genes that are critical for the embryonic development, self-renewal, maintenance, and functionality of blood-forming, lympathic system-forming, and other tissue-forming stem cells. GATA2 is encoded by the GATA2 gene, a gene which often suffers germline and somatic mutations which lead to a wide range of familial and sporadic diseases, respectively. The gene and its product are targets for the treatment of these diseases.
Transcription regulator protein BACH2 is a protein that in humans is encoded by the BACH2 gene. It contains a BTB/POZ domain at its N-terminus which forms a disulphide-linked dimer and a bZip_Maf domain at the C-terminus.
SP110 nuclear body protein is a protein that in humans is encoded by the SP110 gene.
PML-RARA-regulated adapter molecule 1 is a protein that in humans is encoded by the PRAM1 gene.
Anne Dejean-Assémat is a French molecular biologist working on the mechanisms leading to the development of human cancers. Professor at the Pasteur Institute and Research Director at Inserm, she heads the laboratory of Nuclear Organization and Oncogenesis at the Pasteur Institute.
The RARA gene, also known as NR1B1, is a protein coding gene located on chromosome 17 that provides the instructions required to make transcription factor Retinoic Acid Receptor Alpha.
{{cite book}}
: |journal=
ignored (help)