Oligopeptidase A

Last updated
Oligopeptidase A
Identifiers
EC no. 3.4.24.70
CAS no. 394250-11-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Oligopeptidase A (EC 3.4.24.70, 68000-M signalpeptide hydrolase) is an enzyme. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction

Hydrolysis of oligopeptides, with broad specificity. Gly or Ala commonly occur as P1 or P1' residues, but more distant residues are also important, as is shown by the fact that Z-Gly-Pro-Gly-Gly-Pro-Ala is cleaved, but not Z-(Gly)5

This enzyme is known from Escherichia coli and Salmonella typhimurium .

Related Research Articles

<span class="mw-page-title-main">Filamentation</span>

Filamentation is the anomalous growth of certain bacteria, such as Escherichia coli, in which cells continue to elongate but do not divide. The cells that result from elongation without division have multiple chromosomal copies.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.

fis E. coli gene

fis is an E. coli gene encoding the Fis protein. The regulation of this gene is more complex than most other genes in the E. coli genome, as Fis is an important protein which regulates expression of other genes. It is supposed that fis is regulated by H-NS, IHF and CRP. It also regulates its own expression (autoregulation). Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions.

<span class="mw-page-title-main">DnaX ribosomal frameshifting element</span>

The DnaX ribosomal frameshifting element is a RNA element found in the mRNA of the dnaX gene in E. coli. The dnaX gene has two encoded products, tau and gamma, which are produced in a 1:1 ratio. The gamma protein is synthesised due to programmed frameshifting and is shorter than tau. The two products of the dnaX gene are DNA polymerase III subunits.

<span class="mw-page-title-main">Hfq protein</span>

The Hfq protein encoded by the hfq gene was discovered in 1968 as an Escherichia coli host factor that was essential for replication of the bacteriophage Qβ. It is now clear that Hfq is an abundant bacterial RNA binding protein which has many important physiological roles that are usually mediated by interacting with Hfq binding sRNA.

<span class="mw-page-title-main">Swarming motility</span>

Swarming motility is a rapid and coordinated translocation of a bacterial population across solid or semi-solid surfaces, and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen and has been mostly studied in genus Serratia, Salmonella, Aeromonas, Bacillus, Yersinia, Pseudomonas, Proteus, Vibrio and Escherichia.

<span class="mw-page-title-main">Arginine decarboxylase</span>

The enzyme Acid-Induced Arginine Decarboxylase (AdiA), also commonly referred to as arginine decarboxylase, catalyzes the conversion of L-arginine into agmatine and carbon dioxide. The process consumes a proton in the decarboxylation and employs a pyridoxal-5'-phosphate (PLP) cofactor, similar to other enzymes involved in amino acid metabolism, such as ornithine decarboxylase and glutamine decarboxylase. It is found in bacteria and virus, though most research has so far focused on forms of the enzyme in bacteria. During the AdiA catalyzed decarboxylation of arginine, the necessary proton is consumed from the cell cytoplasm which helps to prevent the over-accumulation of protons inside the cell and serves to increase the intracellular pH. Arginine decarboxylase is part of an enzymatic system in Escherichia coli, Salmonella Typhimurium, and methane-producing bacteria Methanococcus jannaschii that makes these organisms acid resistant and allows them to survive under highly acidic medium.

<span class="mw-page-title-main">Virulence-related outer membrane protein family</span>

Virulence-related outer membrane proteins, or outer surface proteins (Osp) in some contexts, are expressed in the outer membrane of gram-negative bacteria and are essential to bacterial survival within macrophages and for eukaryotic cell invasion.

<span class="mw-page-title-main">Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase</span>

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

<span class="mw-page-title-main">Flagellar motor switch protein</span>

In molecular biology, the flagellar motor switch protein(Flig) is one of three proteins in certain bacteria coded for by the gene fliG. The other two proteins are FliN coded for by fliN, and FliM coded for by fliM. The protein complex regulates the direction of flagellar rotation and hence controls swimming behaviour. The switch is a complex apparatus that responds to signals transduced by the chemotaxis sensory signalling system during chemotactic behaviour. CheY, the chemotaxis response regulator, is believed to act directly on the switch to induce a switch in the flagellar motor direction of rotation.

<span class="mw-page-title-main">John Roth (geneticist)</span> American geneticist

John Roger Roth is an American geneticist, bacterial physiologist, and evolutionist. He is a Distinguished Professor of Biological Sciences at the University of California, Davis.

The alpha-D-phosphohexomutases are a large superfamily of enzymes, with members in all three domains of life. Enzymes from this superfamily are ubiquitous in organisms from E. Coli to humans, and catalyze a phosphoryl transfer reaction on a phosphosugar substrate. Four well studied subgroups in the superfamily are:

  1. Phosphoglucomutase (PGM)
  2. Phosphoglucomutase/Phosphomannomutase (PGM/PMM)
  3. Phosphoglucosamine mutase (PNGM)
  4. Phosphoaceytlglucosamine mutase (PAGM)

Propionate kinase is an enzyme with systematic name ATP:propanoate phosphotransferase. This enzyme catalyses the following chemical reaction

PepB aminopeptidase is an enzyme which catalyses the following chemical reaction:

Dipeptidase E is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Peptidase Do</span>

Peptidase Do is an enzyme. This enzyme catalyses the following chemical reaction

The Disulfide bond oxidoreductase D (DsbD) family is a member of the Lysine Exporter (LysE) Superfamily. A representative list of proteins belonging to the DsbD family can be found in the Transporter Classification Base.

The C4-dicarboxylate uptake family or Dcu family is a family of transmembrane ion transporters found in bacteria. Their function is to exchange dicarboxylates such as aspartate, malate, fumarate and succinate.

References

  1. Novak P, Dev IK (November 1988). "Degradation of a signal peptide by protease IV and oligopeptidase A". Journal of Bacteriology. 170 (11): 5067–75. doi:10.1128/jb.170.11.5067-5075.1988. PMC   211572 . PMID   3053642.
  2. Conlin CA, Vimr ER, Miller CG (September 1992). "Oligopeptidase A is required for normal phage P22 development". Journal of Bacteriology. 174 (18): 5869–80. doi:10.1128/jb.174.18.5869-5880.1992. PMC   207121 . PMID   1522065.
  3. Conlin CA, Trun NJ, Silhavy TJ, Miller CG (September 1992). "Escherichia coli prlC encodes an endopeptidase and is homologous to the Salmonella typhimurium opdA gene". Journal of Bacteriology. 174 (18): 5881–7. doi:10.1128/jb.174.18.5881-5887.1992. PMC   207123 . PMID   1325967.
  4. Conlin CA, Miller CG (1995). Dipeptidyl carboxypeptidase and oligopeptidase A from Escherichia coli and Salmonella typhimurium. Methods in Enzymology. Vol. 248. pp. 567–79. doi:10.1016/0076-6879(95)48036-6. PMID   7674945.