Oviraptoridae

Last updated

Oviraptorids
Temporal range: Late Cretaceous,
84–66  Ma
Oviraptoridae Diversity.jpg
Montage of four oviraptorids. Clockwise from top left: Citipati ? sp., Nemegtomaia , Huanansaurus and Conchoraptor
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Superfamily: Caenagnathoidea
Family: Oviraptoridae
Barsbold, 1976
Type species
Oviraptor philoceratops
Osborn, 1924
Subgroups

Oviraptoridae is a group of bird-like, herbivorous and omnivorous maniraptoran dinosaurs. Oviraptorids are characterized by their toothless, parrot-like beaks and, in some cases, elaborate crests. They were generally small, measuring between one and two metres long in most cases, though some possible oviraptorids were enormous. Oviraptorids are currently known only from the Late Cretaceous of Asia, with the most well-known species and complete specimens found only in the Gobi Desert of Mongolia and northwestern China.

Contents

Description

Oksoko MPC-D 102 110 skull.jpg
Skull of Oksoko
Nemegtomaia.png
Skeletal diagrams of Nemegtomaia

The most characteristic feature of this group is the skull structure. Oviraptorids had short snouts and very deep mandibles. Some taxa (such as Citipati , Corythoraptor , Rinchenia ) had a midline crest on top of the skull, resembling that of a cassowary. Other distinguishing characteristics include a bony spike intruding on the mandibular fenestra, nostrils placed very high and far back on the snout, an extremely thin bony bar beneath the eye, and highly pneumatized skull bones. Like their relatives the caenagnathids, the jaws were edentulous (with no teeth), having instead two small bony projections on the roof of the mouth.

Classification

The classification of the oviraptorids has been controversial. Most studies divide oviraptorosaurs into two primary sub-groups, the Caenagnathidae and the Oviraptoridae. However, some phylogenetic studies have suggested that many traditional members of the Caenagnathidae may be more closely related to the crested oviraptorids. Because of this, and the fact that at least one study found that Caenagnathus itself may not have been part of the 'caenagnathid' group, Tom Holtz (2010) placed that group close to the Oviraptoridae and termed it the Elmisauridae, [1] though this idea has not gained consensus among other researchers.

The Oviraptoridae itself is traditionally divided into two "subfamilies": the small, short-armed, and mainly crestless subfamily Heyuanniinae and the larger, crested, long-armed Oviraptorinae ( Oviraptor + Citipati ). Some phylogenetic studies have shown that Oviraptor is the most primitive known oviraptorid, thus making Citipati a closer relative of the "ingeniines" and this traditional division into crestless and crested forms artificial. [2]

Other possible oviraptorids include Nomingia gobiensis , Gigantoraptor erlianensis , Jiangxisaurus ganzhouensis and Shixinggia oblita . All four have been suggested to be oviraptorids, caenagnathids, or more primitive than either group. The below cladogram was found in the description of the genus Anzu. [2]

Caenagnathoidea

Caenagnathidae

Oviraptoridae

Nankangia jiangxiensis

Yulong mini

Nomingia gobiensis

Oviraptor philoceratops

Rinchenia mongoliensis

Zamyn Khondt oviraptorid

Citipati osmolskae

Wulatelong gobiensis

Banji long

Shixinggia oblita

Jiangxisaurus ganzhouensis

Ganzhousaurus nankangensis

Nemegtomaia barsboldi

Machairasaurus leptonychus

Conchoraptor gracilis

Khaan mckennai

Ingenia yanshini

Heyuannia huangi

In 2020, during their description of Oksoko , Funston et al. recovered a slightly different cladogram. [3] Because Oviraptor did not clade with Citipati and the other "oviraptorines", they named the latter's clade Citipatiinae, although they did not provide a formal definition. However, according to Mickey Mortimer, the clade can be considered valid because its describers explicitly name it as new, which satisfies ICZN Article 16.1. [4]

Oviraptorid profiles Oviraptorinaeprofiles.jpg
Oviraptorid profiles
Oviraptoridae

Nankangia

Oviraptor

Yulong

Citipatiinae

Wulatelong

Rinchenia

Tongtianlong

Ganzhousaurus

Citipati

Zamyn Khondt oviraptorid

Huanansaurus

Corythoraptor

Heyuanninae

Shixinggia

Khaan

Conchoraptor

Machairasaurus

Nemegtomaia

Heyuannia huangi

Heyuannia yanshini

Banji

Jiangxisaurus

Oksoko

Paleobiology

Diet

Skull of Nemegtomaia, featuring deep lower jaws and a large palatal region Nemegtomaia skull.jpg
Skull of Nemegtomaia, featuring deep lower jaws and a large palatal region

The diet of oviraptorids is not fully understood. Though some appear to have been at least partially carnivorous, they were probably primarily herbivorous or omnivorous. [5]

Originally, oviraptorids were thought to be specialized egg raiders, based on a Mongolian find showing Oviraptor on top of a nest erroneously attributed to the ceratopsian dinosaur Protoceratops . However, discoveries in the 1990s, including Citipati specimens clearly brooding (rather than preying on) the same types of nests, and a Citipati embryo inside the same type of egg preserved in these nests, showed that the "specialized egg thief" idea was incorrect. [6] Still, some scientists have suggested that oviraptorids may have fed on shelled food items like eggs or shellfish. However, animals specialized for eating shelled food typically have broad, crushing beaks or teeth. In contrast, the jaws of oviraptorids had thin, sharp edges probably supporting shearing beaks, ill-suited for cracking shells. Among other known animals, the beaks of oviraptorids most closely resemble those of herbivorous dicynodont synapsids, which are usually considered herbivorous.(This leads to the possibility that these animals are omnivorous). [5]

Their beaks also share similarities with the beaks of herbivorous parrots and tortoises. [7]

Evidence of partial carnivory among some oviraptorines comes from a lizard skeleton preserved in the body cavity of the type specimen of Oviraptor [8] and two hatchling Byronosaurus skulls found in a Citipati nest. [9] Some scientists have also suggested that some oviraptorids (especially the small-handed, weak-clawed "ingeniines") fed mainly on plant material. [5]

Reproduction

Oviraptorid eggs (SMNH-20140105).png
Nanxiong Formation oviraptorid eggs (IVPP V2018).png
Citipati MPC-D 100 971 labelled.png
Collection of several embryo-bearing eggs of oviraptorids

Although fossilized dinosaur eggs are generally rare, oviraptorid eggs are relatively well known. Several oviraptorid nests, eggs, and embryos are known, mostly uncovered in the Gobi Desert. Some specimens of Oviraptor philoceratops , Citipati osmolskae , Nemegtomaia and cf. Machairasaurus have been found in brooding positions in association with nests. [8] [10] [11] All of the nesting specimens are situated on top of egg clutches, with their limbs spread symmetrically on each side of the nest, front limbs covering the nest perimeter. This brooding posture is found today only in birds and supports a behavioral link between birds and theropod dinosaurs. [10]

Oviraptorid eggs are shaped like elongated ovals (elongatoolithid) and resemble the eggs of ratite birds (such as ostriches) in texture and shell structure. In the nest, eggs are typically found in pairs and arranged in concentric circles of up to three layers, with complete clutches consisting of as many of 22 eggs in some species. [12] The eggs of Citipati are the largest known definitive oviraptorid eggs, at 18 cm. In contrast, eggs associated with Oviraptor are only up to 14 cm long. [10]

The first oviraptorid eggs (of the genus Oviraptor, which mean "Egg thief") were found in close proximity to the remains of the ceratopsian dinosaur Protoceratops and it was assumed that the oviraptorids were preying upon the eggs of the ceratopsians. [13] It was not until 1993, when a Citipati embryo was discovered inside an egg of the type assigned to Protoceratops, that the error was corrected. [6] Norell et al., who recognized the embryo as oviraptorid, assigned it to the genus Citipati. The egg containing the embryo was smaller than most known Citipati eggs at only 12 cm, though it was partially eroded and broken into three pieces, making an accurate estimate of its original size difficult. [10] The embryo-bearing egg was otherwise identical to other oviraptorid eggs in shell structure and was found in an isolated nest, again arranged in a circular pattern. [6]

Nesting Nemegtomaia specimen MPC-D 107/15 Nemegtomaia nesting.png
Nesting Nemegtomaia specimen MPC-D 107/15

An oviraptorosaurian specimen from China described in 2005 was found to have two unlaid eggs within the pelvic canal. This suggests that, unlike modern crocodilians, oviraptorosaurs did not produce and lay many eggs at the same time. Rather, the eggs were produced within the reproductive organs in pairs, and laid two at a time, with the mother positioned in the center of the nest and rotating in a circle as each pair was laid. This behavior is supported by the fact that the eggs oval shape, with the more narrow end pointing backward from the birth canal, matching their orientation toward the center of the nest after being laid. [14]

Oviraptorid nest/egg clutch (specimen PFMM 0010403018) OviraptoridNest.jpg
Oviraptorid nest/egg clutch (specimen PFMM 0010403018)

The presence of two shelled eggs within the birth canal shows that oviraptorosaurs were intermediate between the reproductive biology of crocodilians and modern birds. Like crocodilians, they had two oviducts. However, crocodilians produce multiple shelled eggs per oviduct at a time, whereas oviraptorosaurs, like birds, produced only one egg per oviduct at a time. [14]

In 2017, paleontologists discovered colored pigments in some fossilized oviraptorid embryos of the egg-shell genus Macroolithus (which may represent eggs of Heyuannia ). Examinations of eggs attributed to Heyuannia by Jasmina Wiemann and Tzu-Ruei Yang et al revealed the eggs preserved the blue-green pigment biliverdin and the reddish-brown pigment protoporphyrin, the same pigments found in many modern birds' eggshells. The eggs are thought to have been a blue-green color, because biliverdin is preserved in much greater abundance the photoporphyrin. In modern bird eggs, coloration can camouflage the eggs or help parents identify eggs, and it is correlated with more intensive parental care. [15]

Metabolism

A study by Robert Eagle et al. of the University of California-Los Angeles indicates that from specimens of eggs found in Mongolia and examination of the isotopes carbon-13 and oxygen 18 found within, Oviraptorids had body temperatures that could be elevated higher than that of the surrounding environment but lower than that of birds. This is very different from the isotope ratios of sauropod dinosaurs like Brachiosaurus , which had body temperatures of up to 100 °F (38 °C) and were fully endothermic. [16]

Feathers

Restoration of a nesting Nemegtomaia, featuring feathers used to incubate eggs Nesting Nemegtomaia.jpg
Restoration of a nesting Nemegtomaia, featuring feathers used to incubate eggs

Oviraptorids were probably feathered, since some close relatives were found with feathers preserved (including species of Caudipteryx , Protarchaeopteryx and Similicaudipteryx ). [17] [18] Another finding pointing to this is the discovery in Nomingia of a pygostyle, a bone that results from the fusion of the last tail vertebrae and is responsible in birds to hold a fan of feathers in the tail. [19] Finally, the arm position of the brooding Citipati would have been far more effective if feathers were present to cover the eggs. [20]

Pathology

The brooding oviraptorid specimen IGM 100/979 showed a callus and possible longitudinal groove left over from a healed fracture of the right ulna. Other oviraptorids have had pathological features reported in their phalanges but these have not been described in detail in the scientific literature. [21]

Paleoenvironment

Heyuannia restoration with nest Heyuannia and eggs nest.jpg
Heyuannia restoration with nest

Almost all oviraptorids come from desert deposits of the Gobi Desert. Even in the late Cretaceous period, much of this area was desert, or at least very dry, habitat. In many of the localities where they are found, oviraptorids are among the most abundant dinosaurs present, second only to ankylosaurs and protoceratopsids. This is consistent with the idea that they were primarily herbivores, which tend to far outnumber carnivores in a given environment. Oviraptorids appear to have been far more abundant in arid habitats dominated mainly by small dinosaurs (such as those preserved in the Barun Goyot and Djadochta Formations) than in wetter ecosystems where large dinosaurs are common (such as the Nemegt Formation). The same pattern holds true for protoceratopsids, indicating that both groups preferred dry, desert-like habitat, and fed mainly on the types of tough, low-growing plant life that grows in arid climates. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Troodontidae</span> Extinct family of bird-like dinosaurs

Troodontidae is a clade of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and incomplete and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens, have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.

<i>Oviraptor</i> Extinct genus of dinosaurs

Oviraptor is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous period. The first remains were collected from the Djadokhta Formation of Mongolia in 1923 during a paleontological expedition led by Roy Chapman Andrews, and in the following year the genus and type species Oviraptor philoceratops were named by Henry Fairfield Osborn. The genus name refers to the initial thought of egg-stealing habits, and the specific name was intended to reinforce this view indicating a preference over ceratopsian eggs. Despite the fact that numerous specimens have been referred to the genus, Oviraptor is only known from a single partial skeleton regarded as the holotype, as well as a nest of about fifteen eggs and several small fragments from a juvenile.

<i>Khaan</i> Extinct genus of dinosaurs

Khaan was an oviraptorid dinosaur that was found in the Djadochta Formation of Mongolia and lived in the Late Cretaceous Period (Campanian), 75-71 million years ago.

<i>Protoceratops</i> Genus of reptiles (fossil)

Protoceratops is a genus of small protoceratopsid dinosaurs that lived in Asia during the Late Cretaceous, around 75 to 71 million years ago. The genus Protoceratops includes two species: P. andrewsi and the larger P. hellenikorhinus. The former was described in 1923 with fossils from the Mongolian Djadokhta Formation, and the latter in 2001 with fossils from the Chinese Bayan Mandahu Formation. Protoceratops was initially believed to be an ancestor of ankylosaurians and larger ceratopsians, such as Triceratops and relatives, until the discoveries of other protoceratopsids. Populations of P. andrewsi may have evolved into Bagaceratops through anagenesis.

<span class="mw-page-title-main">Oviraptorosauria</span> Extinct clade of dinosaurs

Oviraptorosaurs are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.

<i>Byronosaurus</i> Extinct genus of dinosaurs

Byronosaurus is a genus of troodontid dinosaur from the Late Cretaceous Period of Mongolia.

<i>Conchoraptor</i> Extinct genus of dinosaurs

Conchoraptor is a genus of oviraptorid dinosaurs that lived in Asia during the Late Cretaceous epoch, about 70 million years ago. It is known from the Barun Goyot and Nemegt formations of Mongolia.

<i>Citipati</i> Genus of oviraptorid dinosaur

Citipati is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous period, about 75 million to 71 million years ago. It is mainly known from the Ukhaa Tolgod locality at the Djadochta Formation, where the first remains were collected during the 1990s. The genus and type species Citipati osmolskae were named and described in 2001. A second species from the adjacent Zamyn Khondt locality may also exist. Citipati is one of the best-known oviraptorids thanks to a number of well-preserved specimens, including individuals found in brooding positions atop nests of eggs, though most of them were initially referred to the related Oviraptor. These nesting specimens have helped to solidify the link between non-avian dinosaurs and birds.

<i>Nemegtomaia</i> Extinct genus of dinosaurs

Nemegtomaia is a genus of oviraptorid dinosaur from what is now Mongolia that lived in the Late Cretaceous Period, about 70 million years ago. The first specimen was found in 1996, and became the basis of the new genus and species N. barsboldi in 2004. The original genus name was Nemegtia, but this was changed to Nemegtomaia in 2005, as the former name was preoccupied. The first part of the generic name refers to the Nemegt Basin, where the animal was found, and the second part means "good mother", in reference to the fact that oviraptorids are known to have brooded their eggs. The specific name honours the palaeontologist Rinchen Barsbold. Two more specimens were found in 2007, one of which was found on top of a nest with eggs, but the dinosaur had received its genus name before it was found associated with eggs.

<span class="mw-page-title-main">Djadochta Formation</span> Geologic formation in Mongolia

The Djadochta Formation is a highly fossiliferous geological formation situated in Central Asia, Gobi Desert, dating from the Late Cretaceous period, about 75 million to 71 million years ago. The type locality is the Bayn Dzak locality, famously known as the Flaming Cliffs. Reptile and mammal remains are among the fossils recovered from the formation.

<span class="mw-page-title-main">Caenagnathidae</span> Extinct family of dinosaurs

Caenagnathidae is a family of derived caenagnathoid dinosaurs from the Cretaceous of North America and Asia. They are a member of the Oviraptorosauria, and relatives of the Oviraptoridae. Like other oviraptorosaurs, caenagnathids had specialized beaks, long necks, and short tails, and would have been covered in feathers. The relationships of caenagnathids were long a puzzle. The family was originally named by Raymond Martin Sternberg in 1940 as a family of flightless birds. The discovery of skeletons of the related oviraptorids revealed that they were in fact non-avian theropods, and the discovery of more complete caenagnathid remains revealed that Chirostenotes pergracilis, originally named on the basis of a pair of hands, and Citipes elegans, originally thought to be an ornithomimid, named from a foot, were caenagnathids as well.

<i>Gigantoraptor</i> Extinct genus of dinosaurs

Gigantoraptor is a genus of large oviraptorosaur dinosaur that lived in Asia during the Late Cretaceous period. It is known from the Iren Dabasu Formation of Inner Mongolia, where the first remains were found in 2005.

<span class="mw-page-title-main">Mahakala omnogovae</span> Extinct species of dinosaur

Mahakala is a genus of halszkaraptorine theropod dinosaur from the Campanian-age Upper Cretaceous Djadokhta Formation of Ömnögovi, Mongolia. It is based on a partial skeleton found in the Gobi Desert. Mahakala was a small dromaeosaurid, and its skeleton shows features that are also found in early troodontids and avialans. Despite its late appearance, it is among the most basal dromaeosaurids. Its small size, and the small size of other basal deinonychosaurians, suggests that small size appeared before flight capability in birds. The genus is named for Mahakala, one of eight protector deities (dharmapalas) in Tibetan Buddhism.

<i>Elongatoolithus</i> Fossil dinosaur eggs

Elongatoolithus is an oogenus of dinosaur eggs found in the Late Cretaceous formations of China and Mongolia. Like other elongatoolithids, they were laid by small theropods, and were cared for and incubated by their parents until hatching. They are often found in nests arranged in multiple layers of concentric rings. As its name suggests, Elongatoolithus was a highly elongated form of egg. It is historically significant for being among the first fossil eggs given a parataxonomic name.

<i>Machairasaurus</i> Extinct genus of dinosaurs

Machairasaurus is a genus of oviraptorid dinosaur which was found in the Bayan Mandahu Formation, China, dating to the late Cretaceous period.

<i>Macroolithus</i> Oogenus of dinosaur egg

Macroolithus is an oogenus of dinosaur egg belonging to the oofamily Elongatoolithidae. The type oospecies, M. rugustus, was originally described under the now-defunct oogenus name Oolithes. Three other oospecies are known: M. yaotunensis, M. mutabilis, and M. lashuyuanensis. They are relatively large, elongated eggs with a two-layered eggshell. Their nests consist of large, concentric rings of paired eggs. There is evidence of blue-green pigmentation in its shell, which may have helped camouflage the nests.

<i>Nankangia</i> Extinct genus of dinosaurs

Nankangia is an extinct genus of caenagnathoid oviraptorosaurian dinosaur known from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City of Jiangxi Province, southeastern China. It contains a single species, Nankangia jiangxiensis. N. jiangxiensis coexisted with at least four other caenagnathoids, including but not limited to Corythoraptor, Banji, Ganzhousaurus and Jiangxisaurus. The relatively short dentary and non-downturned mandibular symphysis of Nankangia suggest that it may have been more herbivorous than carnivorous. Its diet consisted of leaves and seeds.

<span class="mw-page-title-main">Timeline of oviraptorosaur research</span>

This timeline of oviraptorosaur research is a chronological listing of events in the history of paleontology focused on the oviraptorosaurs, a group of beaked, bird-like theropod dinosaurs. The early history of oviraptorosaur paleontology is characterized by taxonomic confusion due to the unusual characteristics of these dinosaurs. When initially described in 1924 Oviraptor itself was thought to be a member of the Ornithomimidae, popularly known as the "ostrich" dinosaurs, because both taxa share toothless beaks. Early caenagnathid oviraptorosaur discoveries like Caenagnathus itself were also incorrectly classified at the time, having been misidentified as birds.

<span class="mw-page-title-main">Elongatoolithidae</span> Oofamily of dinosaur eggs

Elongatoolithidae is an oofamily of fossil eggs, representing the eggs of oviraptorosaurs. They are known for their highly elongated shape. Elongatoolithids have been found in Europe, Asia, and both North and South America.

<i>Beibeilong</i> Caenagnathid dinosaur genus from the Late Cretaceous

Beibeilong is a genus of large caenagnathid dinosaurs that lived in Asia during the Late Cretaceous epoch, about 96 million to 88 million years ago. The genus contains a single species, Beibeilong sinensis. The species was named and described in 2017 through analysis of an embryonic skeleton and partial nest with large eggs that were discovered in the Gaogou Formation of China between 1992 and 1993.

References

  1. Holtz, Thomas R. Jr. (2011) Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages, Winter 2011 Appendix.
  2. 1 2 Lamanna, M. C.; Sues, H. D.; Schachner, E. R.; Lyson, T. R. (2014). "A New Large-Bodied Oviraptorosaurian Theropod Dinosaur from the Latest Cretaceous of Western North America". PLOS ONE. 9 (3): e92022. Bibcode:2014PLoSO...992022L. doi: 10.1371/journal.pone.0092022 . PMC   3960162 . PMID   24647078.
  3. Funston, G. F.; Tsogtbaatar, C.; Tsogtbaatar, K.; Kobayashi, Y.; Sullivan, C.; Currie, P. J. (2020). "A new two-fingered dinosaur sheds light on the radiation of Oviraptorosauria". Royal Society Open Science. 7 (10): 201184. Bibcode:2020RSOS....701184F. doi: 10.1098/rsos.201184 . PMC   7657903 . PMID   33204472.
  4. "Oviraptorosauria".
  5. 1 2 3 4 Nicholas R. Longrich; Philip J. Currie; Dong Zhi-Ming (2010). "A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Bayan Mandahu, Inner Mongolia". Palaeontology. 53 (5): 945–960. doi: 10.1111/j.1475-4983.2010.00968.x .
  6. 1 2 3 Norell, M. A., Clark, J. M., Dashzeveg, D., Barsbold, R., Chiappe, L. M., Davidson, A. R., McKenna, M. C., Altangerel, P. and Novacek, M. J. (November 1994). "A theropod dinosaur embryo and the affinities of the Flaming Cliffs Dinosaur eggs". Science. 266 (5186): 779–782. Bibcode:1994Sci...266..779N. doi:10.1126/science.266.5186.779. PMID   17730398. S2CID   22333224.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Jansen, S. O. K. (2008). Beak morphology in oviraptorids, based on extant birds and turtles (Thesis). University of Oslo. pp. 1−48. hdl: 10852/11785 .
  8. 1 2 Norell, M.A.; Clark, J.M.; Chiappe, L.M.; Dashzeveg, D. (1995). "A nesting dinosaur". Nature. 378 (6559): 774–776. Bibcode:1995Natur.378..774N. doi:10.1038/378774a0. S2CID   4245228.
  9. Bever, G.S. and Norell, M.A. (2009). "The perinate skull of Byronosaurus (Troodontidae) with observations on the cranial ontogeny of paravian theropods." American Museum Novitates, 3657: 51 pp.
  10. 1 2 3 4 Clark, J.M., Norell, M.A., & Chiappe, L.M. (1999). "An oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest." American Museum Novitates,3265: 36 pp., 15 figs.; (American Museum of Natural History) New York. (5.4.1999).
  11. Fanti, F.; Currie, P. J.; Badamgarav, D. (2012). Lalueza-Fox, Carles (ed.). "New Specimens of Nemegtomaia from the Baruungoyot and Nemegt Formations (Late Cretaceous) of Mongolia". PLOS ONE. 7 (2): e31330. Bibcode:2012PLoSO...731330F. doi: 10.1371/journal.pone.0031330 . PMC   3275628 . PMID   22347465.
  12. Varricchio, D.J. (2000). "Reproduction and Parenting," in Paul, G.S. (ed.). The Scientific American Book of Dinosaurs. New York: St. Martin's Press, pp. 279–293.
  13. Osborn, H.F. (1924). "Three new Theropoda, Protoceratops zone, central Mongolia." American Museum Novitates,144: 12 pp., 8 figs.; (American Museum of Natural History) New York. (11.7.1924).
  14. 1 2 Sato, T.; Cheng, Y.; Wu, X.; Zelenitsky, D.K.; Hsaiao, Y. (2005). "A pair of shelled eggs inside a female dinosaur". Science. 308 (5720): 375. doi:10.1126/science.1110578. PMID   15831749. S2CID   19470371.
  15. Wiemann, J.; Yang, T.-R.; Sander, P.N.; Schneider, M.; Engeser, M.; Kath-Schorr, S.; Müller, C.E.; Sander, P.M. (2017). "Dinosaur origin of egg color: oviraptors laid blue-green eggs". PeerJ. 5: e3706. doi: 10.7717/peerj.3706 . PMC   5580385 . PMID   28875070.
  16. "Sun-warmed dinosaurs may have been surprisingly good sprinters: Some had the ability to warm themselves by drawing heat from the sun".
  17. Ji, Q.; Currie, P.J.; Norell, M.A.; Ji, S. (1998). "Two feathered dinosaurs from northeastern China" (PDF). Nature. 393 (6687): 753–761. Bibcode:1998Natur.393..753Q. doi:10.1038/31635. S2CID   205001388. Archived from the original (PDF) on 2008-12-17.
  18. Ji, Q., and Ji, S. (1997). "A Chinese archaeopterygian, Protarchaeopteryx gen. nov." Geological Science and Technology (Di Zhi Ke Ji), 238: 38–41. Translated By Will Downs Bilby Research Center Northern Arizona University January, 2001
  19. Barsbold, R.; Osmólska, H.; Watabe, M.; Currie, P.J.; Tsogtbaatar, K. (2000). "New Oviraptorosaur (Dinosauria, Theropoda) From Mongolia: The First Dinosaur With A Pygostyle". Acta Palaeontologica Polonica. 45 (2): 97–106.
  20. Paul, G.S. (2002). Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds. Baltimore: Johns Hopkins University Press.
  21. Molnar, R. E., 2001, Theropod paleopathology: a literature survey: In: Mesozoic Vertebrate Life, edited by Tanke, D. H., and Carpenter, K., Indiana University Press, p. 337-363.