Incisivosaurus Temporal range: Barremian ~ | |
---|---|
Restoration of the skull | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | Saurischia |
Clade: | Theropoda |
Clade: | † Oviraptorosauria |
Genus: | † Incisivosaurus Xu et al. 2002 |
Type species | |
Incisivosaurus gauthieri Xu et al. 2002 |
Incisivosaurus ("incisor lizard") is a genus of small, probably herbivorous theropod dinosaurs from the early Cretaceous Period of what is now the People's Republic of China. The first specimen to be described (by Xu et al. in 2002), IVPP V13326, is a skull that was collected from the lowermost levels (the fluvial Lujiatun beds) of the Yixian Formation (dating to the Barremian stage about 126 million years ago [1] ) in the Sihetun area, near Beipiao City, in western Liaoning Province. The most significant, and highly unusual, characteristic of this dinosaur is its apparent adaptation to an herbivorous or omnivorous lifestyle. It was named for its prominent, rodent-like front teeth, which show wear patterns commonly found in plant-eating dinosaurs. The specific name gauthieri honors Dr. Jacques Gauthier, a pioneer of the phylogenetic method of classification. [2]
The initial description of Incisivosaurus by Xu et al. showed that the skull, which measures approximately 10 cm (3.9 in) in length, preserves the most complete dentition known for any oviraptorosaurian. Their cladistic analysis indicated that Incisivosaurus lies at the base of the oviraptorosaurian group, making it more primitive than Caudipteryx and the oviraptorids. A subsequent study by Osmolska et al. in 2004 described the distinguishing skeletal features of Incisivosaurus, including a long snout that made up about half the total length of the skull, a slender lower jaw with a long fenestra (opening), and its distinctive, large, flattened front teeth. In addition to these unique features, Incisivosaurus shared many traits with more typical oviraptorosaurs, allowing its classification with that group. Several features, including its numerous teeth (most advanced oviraptorids were toothless), show that it was a primitive member of the group, and several features of the skull even support a relationship with the therizinosaurs, another theropod group that was probably herbivorous. [3]
In 2009 the holotype skull was scanned and analyzed in three dimensions. The results indicated that Incisivosaurus had less bird - like air spaces in the skull bones than later oviraptorosaurs did. It also found that Incisivosaurus had reduced olfactory lobes and expanded optic lobes similar to ornithomimosaurs. It suggested that the most birdlike features of oviraptorosaurs may have been convergent with birds. [4]
Incisivosaurus is assumed to have been feathered like most other maniraptoran theropods. Its total body length has been estimated at 0.8–1 meter (2.6–3.3 feet) and its weight at 2–4.6 kg (4.4–10 lbs). [5]
In 2010, two feathered oviraptorosaur specimens were described, both of which preserved feather traces. These specimens (both juveniles, though one closer to maturity than the other) showed that the feathers were similar to the related Caudipteryx, with long (symmetrical) vaned feathers on the hand and tail, and the rest of the body covered in simpler, downy feathers. Though initially interpreted as specimens of Similicaudipteryx , later research suggested that they could instead be referred to Incisivosaurus. [6]
The nature of the feathers preserved in the two Yixian specimens appeared to Xu and colleagues, who described the two feathered specimens, to change with age. The youngest specimen had relatively short primary feathers (those anchored to the hand) compared to its tail feathers. In the older specimen, the primary feathers were the same length as the tail feathers, and secondary feathers (those anchored to the lower arm) were also present. [7] The primary feathers may have grown more slowly than the tail feathers, not reaching equal size until the animal was close to maturity, and the secondary feathers would not appear at all until this more mature stage. This suggests that the wing feathers had little use at a young age, only becoming fully developed with maturity. [7]
Additionally, the youngest specimen's vaned feathers appeared to lack barbs except at the tip, instead consisting of a solid sheet. [7] Xu and colleagues interpreted the stark differences in the feathers of the two specimens as primarily age-related. They speculated that hatchlings would have been covered in natal down like modern birds. As the animal aged, the down would be replaced by vaned pennaceous feathers on the hands and tail, but ribbon-like and primitive in form, similar to the tail feathers of Confuciusornis , Epidexipteryx , and some enantiornithines. These feathers would be lost through moulting as the animal aged, and replaced with more modern-style barbed feathers. The primary feathers grew more slowly than the tail feathers, not reaching equal size until the animal was close to maturity, and the secondary feathers would not appear at all until this more mature stage. This suggests that the wing feathers had little use at a young age, only becoming fully developed with maturity. [7]
However, feather development specialist Richard Prum disputed the above interpretation of the feathers in a November 2010 letter to the journal Nature. Prum noted that the apparently ribbon-like structure of the juvenile's feathers were consistent with pennaceous feathers in the midst of moulting. In modern birds, new vaned feathers emerge from the feather follicle enclosed in a "pin feather", a solid tube covered in keratin. Usually, the tip of this tube will fall away first, leaving a structure identical to that seen in the fossil. Later, the rest of the sheath falls away when the entire feather has fully developed. Prum also noted, as did Xu and his team, that the structure of the oviraptorosaur feathers is fundamentally different from other prehistoric birds with ribbon-like tail feathers. In those other species, the ribbon portion is formed from a flattened and expanded rachis, or central quill, of the feather, with the feather barbs expanding out at the tip. In the fossil specimen, however, the "ribbon" like portion is the same width as the vaned tip. This is consistent with what is seen in feathers in the process of moulting. Prum concluded that rather than representing an instance of feathers changing in form as the animal aged, this specimen represents the first known fossil evidence of feather moulting. [8]
Prum also noted that in modern birds, tail feathers moult sequentially, not simultaneously as in the oviraptorosaur specimen. However, the sequential moulting of modern birds is because the birds need to retain their ability to fly during the moult (except in penguins). For lineages more primitive than the advent of flight, like oviraptorosaurs, this would not have been an issue, and all the wing and tail feathers of primitive feathered theropods may have moulted simultaneously, more like penguins than flying birds. [8]
Incisivosaurus, as well as its potential synonym Protarchaeopteryx , were included in the phylogenetic analysis of a 2014 study on the group Paraves and its relatives. In the unweight cladogram, Incisivosaurus was rendered as the sister taxon to Protarchaeopteryx, with their group being the most primitive oviraptorosaurians. In both weighted analyses however, Protarchaeopteryx was found to be the most primitive oviraptorosaurian, with Incisivosaurus as the next most basal. One of the weighted cladograms, using TNT, is shown below. [9]
A 2022 study of the bite force of Incisivosaurus and comparisons with other oviraptorosaurs such as Citipati , Khaan , and Conchoraptor suggests that Incisivosaurus had a very strong bite force similar to ornithomimosaurs 33 times its weight. The moderate jaw gape seen in oviraptorosaurs is indicative of herbivory, but it is clear they were feeding on much tougher vegetation than other herbivorous theropods in their environment, such as ornithomimosaurs and therizinosaurs. The examinations suggest oviraptorosaurs may have been powerful-biting generalists or specialists that partook of niche partitioning both in body size and jaw function. [10]
Caudipteryx is a genus of small oviraptorosaur dinosaurs that lived in Asia during the Early Cretaceous, around 124.6 million years ago. They were feathered and extremely birdlike in their overall appearance, to the point that some paleontologists suggested it was a bird. Two species have been described: C. zoui, in 1998, and C. dongi, in 2000.
Oviraptoridae is a group of bird-like, herbivorous and omnivorous maniraptoran dinosaurs. Oviraptorids are characterized by their toothless, parrot-like beaks and, in some cases, elaborate crests. They were generally small, measuring between one and two metres long in most cases, though some possible oviraptorids were enormous. Oviraptorids are currently known only from the Late Cretaceous of Asia, with the most well-known species and complete specimens found only in the Gobi Desert of Mongolia and northwestern China.
Protarchaeopteryx is a genus of turkey-sized feathered theropod dinosaur from China. Known from the Jianshangou bed of the Yixian Formation, it lived during the early Aptian age of the Early Cretaceous, approximately 124.6 million years ago. It was probably a herbivore or omnivore, although its hands were very similar to those of small carnivorous dinosaurs. It appears to be one of the most basal members of the Oviraptorosauria, closely related to Incisivosaurus, or a taxon slightly less closely related to birds than oviraptorosaurs were.
Maniraptora is a clade of coelurosaurian dinosaurs which includes the birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period, and survive today as living birds.
Coelurosauria is the clade containing all theropod dinosaurs more closely related to birds than to carnosaurs.
Beipiaosaurus is a genus of therizinosauroid theropod dinosaurs that lived in China during the Early Cretaceous in the Yixian Formation. The first remains were found in 1996 and formally described in 1999. Before the discovery of Yutyrannus, Beipiaosaurus were among the heaviest dinosaurs known from direct evidence to be feathered. Beipiaosaurus is known from three reported specimens. Numerous impressions of feather structures were preserved that allowed researchers to determine the feathering color which turned out to be brownish.
A feathered dinosaur is any species of dinosaur possessing feathers. That includes all species of birds, and in recent decades evidence has accumulated that many non-avian dinosaur species also possessed feathers in some shape or form. The extent to which feathers or feather-like structures were present in dinosaurs as a whole is a subject of ongoing debate and research.
Sinornithosaurus is a genus of feathered dromaeosaurid dinosaur from the early Cretaceous Period of the Yixian Formation in what is now China. It was the fifth non–avian feathered dinosaur genus discovered by 1999. The original specimen was collected from the Sihetun locality of western Liaoning. It was found in the Jianshangou beds of the Yixian Formation, dated to 124.5 million years ago. Additional specimens have been found in the younger Dawangzhangzi bed, dating to around 122 million years ago.
Oviraptorosaurs are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.
Deinocheirus is a genus of large ornithomimosaur that lived during the Late Cretaceous around 70 million years ago. In 1965, a pair of large arms, shoulder girdles, and a few other bones of a new dinosaur were first discovered in the Nemegt Formation of Mongolia. In 1970, this specimen became the holotype of the only species within the genus, Deinocheirus mirificus; the genus name is Greek for "horrible hand". No further remains were discovered for almost fifty years, and its nature remained a mystery. Two more complete specimens were described in 2014, which shed light on many aspects of the animal. Parts of these new specimens had been looted from Mongolia some years before, but were repatriated in 2014.
Byronosaurus is a genus of troodontid dinosaur from the Late Cretaceous Period of Mongolia.
Gigantoraptor is a genus of large oviraptorosaur dinosaur that lived in Asia during the Late Cretaceous period. It is known from the Iren Dabasu Formation of Inner Mongolia, where the first remains were found in 2005.
Similicaudipteryx, meaning "similar to Caudipteryx", is a genus of theropod dinosaur of the family Caudipteridae.
Epidexipteryx is a genus of small paravian dinosaurs, known from one fossil specimen in the collection of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing. Epidexipteryx represents the earliest known example of ornamental feathers in the fossil record.
Ningyuansaurus is a basal oviraptorosaurian dinosaur genus. It contains the single species Ningyuansaurus wangi, known from a fossil specimen from the Early Cretaceous Yixian Formation of Jianchang, western Liaoning Province, People's Republic of China. It is thought to be the basalmost species of oviraptorosaur, based on its long skull and a greater number of teeth in comparison to any other known oviraptorosaur. The generic name Ningyuansaurus is derived from Ningyuan, an ancient name for Xingcheng City. The specific name honors Wang Qiuwu, the private owner of the specimen who donated it for scientific study. The specimen is now in the Confuciusornis Museum in Xingcheng.
This timeline of oviraptorosaur research is a chronological listing of events in the history of paleontology focused on the oviraptorosaurs, a group of beaked, bird-like theropod dinosaurs. The early history of oviraptorosaur paleontology is characterized by taxonomic confusion due to the unusual characteristics of these dinosaurs. When initially described in 1924 Oviraptor itself was thought to be a member of the Ornithomimidae, popularly known as the "ostrich" dinosaurs, because both taxa share toothless beaks. Early caenagnathid oviraptorosaur discoveries like Caenagnathus itself were also incorrectly classified at the time, having been misidentified as birds.
This timeline of ornithomimosaur research is a chronological listing of events in the history of paleontology focused on the ornithomimosaurs, a group of bird-like theropods popularly known as the ostrich dinosaurs. Although fragmentary, probable, ornithomimosaur fossils had been described as far back as the 1860s, the first ornithomimosaur to be recognized as belonging to a new family distinct from other theropods was Ornithomimus velox, described by Othniel Charles Marsh in 1890. Thus the ornithomimid ornithomimosaurs were one of the first major Mesozoic theropod groups to be recognized in the fossil record. The description of a second ornithomimosaur genus did not happen until nearly 30 years later, when Henry Fairfield Osborn described Struthiomimus in 1917. Later in the 20th century, significant ornithomimosaur discoveries began occurring in Asia. The first was a bonebed of "Ornithomimus" asiaticus found at Iren Debasu. More Asian discoveries took place even later in the 20th century, including the disembodied arms of Deinocheirus mirificus and the new genus Gallimimus bullatus. The formal naming of the Ornithomimosauria itself was performed by Rinchen Barsbold in 1976.
Jianianhualong is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, Jianianhualong tengi, named in 2017 by Xu Xing and colleagues based on an articulated skeleton preserving feathers. The feathers at the middle of the tail of Jianianhualong are asymmetric, being the first record of asymmetrical feathers among the troodontids. Despite aerodynamic differences from the flight feathers of modern birds, the feathers in the tail vane of Jianianhualong could have functioned in drag reduction whilst the animal was moving. The discovery of Jianianhualong supports the notion that asymmetrical feathers appeared early in the evolutionary history of the Paraves.
Xingtianosaurus is an extinct genus of oviraptorosaurian theropod dinosaur that lived in what is now China during the Early Cretaceous. The type and only species, X. ganqi, was named and described in 2019. It was placed in the Caudipteridae, alongside Caudipteryx and Similicaudipteryx.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)