Caenagnathidae

Last updated

Caenagnathids
Temporal range: Early-Late Cretaceous, 110–66  Ma
Chirostenotes skull.jpg
Reconstructed skull of Anzu wyliei
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Superfamily: Caenagnathoidea
Family: Caenagnathidae
Sternberg, 1940
Type species
Caenagnathus collinsi
Sternberg, 1940
Genera
Synonyms

Caenagnathidae is a family of derived caenagnathoid dinosaurs from the Cretaceous of North America and Asia. They are a member of the Oviraptorosauria, and relatives of the Oviraptoridae. [2] Like other oviraptorosaurs, caenagnathids had specialized beaks, [3] long necks, [4] and short tails, [5] and would have been covered in feathers. The relationships of caenagnathids were long a puzzle. The family was originally named by Raymond Martin Sternberg in 1940 [6] as a family of flightless birds. The discovery of skeletons of the related oviraptorids revealed that they were in fact non-avian theropods, [7] and the discovery of more complete caenagnathid remains [4] [8] revealed that Chirostenotes pergracilis, originally named on the basis of a pair of hands, and Citipes elegans, originally thought to be an ornithomimid, named from a foot, were caenagnathids as well.

Contents

Discovery

The name Caenagnathus (and hence Caenagnathidae) means "recent jaws"—when first discovered, it was thought that caenagnathids were close relatives of paleognath birds (such as the ostrich) based on features of the lower jaw. Since it would be unusual to find a recent group of birds in the Cretaceous, the name "recent jaws" was applied. Most paleontologists, however, now think that the birdlike features of the jaw were acquired convergently with modern birds. [9] [10]

Description

Skeletal reconstruction of Anzu Anzu MRF 319.png
Skeletal reconstruction of Anzu

Caenagnathids were some of the largest oviraptorosaurs that ever existed. The largest members are represented by the enormous Beibeilong and Gigantoraptor , estimated around 7.5–8 m (25–26 ft) in length. [11] [12] [13] Other caenagnathids were slightly smaller, such as the 3 m (9.8 ft) long Hagryphus , [14] or the 3.5 m (11 ft) long Anzu'. [15]

Overall, the anatomy of the caenagnathids is similar to that of the closely related Oviraptoridae, but there are a number of differences. In particular, caenagnathid jaws exhibited a distinct suite of specializations not seen in other oviraptorosaurs. Compared to the oviraptorids, the jaws tended to be relatively long and shallow, suggesting that the bite was not as powerful. The inside of the lower jaws also bore a complex series of ridges and toothlike processes, as well as a pair of horizontal, shelf-like structures. Furthermore, the jaws were unusual in being hollow and air filled, apparently being connected to the air sac system. [3]

Analysis of oviraptorosaur functional morphology reveals that caenagnathids were not as well suited to herbivory as more primitive oviraptorosaurs, and their close relatives, the oviraptorids. Their mandibles have a lower mechanical advantage anteriorly but not posteriorly, similar to the dromaeosaurids, and are less robust, which makes them more suited to quicker prey capture, with their pointed beaks aiding in slashing prey. [16]

Caenagnathids also tended to be more lightly built than the oviraptorids. They had slender arms and long, gracile legs, [8] although they lacked the extreme cursorial specializations seen in avimimids and Caudipteryx.

Classification

The family Caenagnathidae, together with its sister group the Oviraptoridae, comprises the superfamily Caenagnathoidea. In phylogenetic taxonomy, the clade Caenagnathidae is defined as the most inclusive group containing Caenagnathus collinsi but not Oviraptor philoceratops . [17] While before 2010s only about two to six species were commonly recognized as belonging to the Caenagnathidae, currently that number may be much greater, with new discoveries and theories about older species that may inflate this number to up to ten. Much of this historical difference centers on the first caenagnathid to be described, Chirostenotes pergracilis. Due to the poor preservation of most caenagnathid remains and resulting misidentifications, different bones and different specimens of Chirostenotes have historically been assigned to a number of different species. For example, the feet of one species, named Macrophalangia canadensis, [18] were known from the same region from which Chirostenotes pergracilis was recovered, but the discovery of a new specimen with both hands and feet preserved [8] provided the support to combine them, while the later discovery of a partial skull with hands and feet [4] suggested that Chirostenotes and Caenagnathus were the same animal, and current studies of caenagnathid relationships continue to find them as closely related genera. [19]

Caenagnathid skeletons to scale Caenagnathidae.jpg
Caenagnathid skeletons to scale

Hendrickx and colleagues (2015) defined a subgroup of Caenagnathidae, the Caenagnathinae, as all caenagnathids more closely related to Caenagnathus collinsi than to Elmisaurus rarus. [20] The group Elmisaurinae is defined as including all species more closely related to Elmisaurus rarus than to Caenagnathus collinsi. [20] [21]

The cladogram below follows an analysis by Gregory Funston in 2020. [22]

Caenagnathidae

Evolution

Comparison between the lower jaw of several oviraptorosaurs, including caenagnathids Oviraptorosaur lower jaw comparison.png
Comparison between the lower jaw of several oviraptorosaurs, including caenagnathids

The earliest known caenagnathid is Microvenator celer, from the Early Cretaceous Cloverly Formation. Caenagnathids likely dispersed to Asia from North America with some caenagnathids later reappearing in western North America, during the Campanian. Caenagnathids showed considerable variation in form. The tiny jaws of Caenagnathasia suggest a small animal, perhaps the size of a turkey. Anzu wyliei , from the Hell Creek Formation is a much larger animal, considerably larger than a human. If Gigantoraptor erlianensis is a caenagnathid, then it would represent far and away the largest member of the group, measuring up to 8 meters (26 ft) in length and weighing up to 2 metric tons (2.2 short tons). [23]

Their beaks also show considerable variation; that of Caenagnathasia is relatively short and deep, while that of Caenagnathus is long and shovel-shaped. This variation in size and beak shape suggests that caenagnathids evolved to exploit a range of ecological niches. Caenagnathids persisted up until the end of the Cretaceous period, as shown by the presence of Anzu and another, unnamed species of elmisaurine (all caenagnathids closer to Elmisaurus than to Caenagnathus) in the late Maastrichtian Hell Creek Formation, before vanishing at the end of the Cretaceous along with all other non-avian dinosaurs. [15]

Species

Roughly a dozen caenagnathid species have been named, but it remains unclear how many are valid. Many species are known from fragmentary remains, such as jaws, hands, or feet, making comparisons between them difficult. Caenagnathus sternbergi, for example, was described on the basis of a jaw bone. It has been interpreted as either the jaws of Chirostenotes pergracilis (described on the basis of a pair of hands) or Chirostenotes elegans [4] (described on the basis of a foot), but because no complete skeleton is known, it is difficult to be certain which animal it belongs to. The relationships of other species remain in doubt. Gigantoraptor was originally interpreted as an oviraptorid, but may in fact represent a primitive caenagnathid. [24]

Caenagnathids are only known from the Late Cretaceous of North America and Asia. [25] The earliest and most primitive known caenagnathid is Caenagnathasia martinsoni , from the Bissekty Formation of Uzbekistan. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Oviraptoridae</span> Extinct family of dinosaurs

Oviraptoridae is a group of bird-like, herbivorous and omnivorous maniraptoran dinosaurs. Oviraptorids are characterized by their toothless, parrot-like beaks and, in some cases, elaborate crests. They were generally small, measuring between one and two metres long in most cases, though some possible oviraptorids were enormous. Oviraptorids are currently known only from the Late Cretaceous of Asia, with the most well-known species and complete specimens found only in the Gobi Desert of Mongolia and northwestern China.

<span class="mw-page-title-main">Oviraptorosauria</span> Extinct group of dinosaurs

Oviraptorosaurs are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.

<i>Caenagnathasia</i> Extinct species of reptile

Caenagnathasia is a small caenagnathid oviraptorosaurian theropod from the Late Cretaceous of Uzbekistan.

<i>Nomingia</i> Extinct genus of dinosaurs

Nomingia is a genus of oviraptorosaur theropod dinosaur hailing from the Late Cretaceous Bugin Tsav Beds of Mongolia.

<i>Chirostenotes</i> Extinct genus of dinosaurs

Chirostenotes is a genus of oviraptorosaurian dinosaur from the late Cretaceous of Alberta, Canada. The type species is Chirostenotes pergracilis.

<i>Hagryphus</i> Extinct genus of dinosaurs

Hagryphus is a monospecific genus of caenagnathid dinosaur from southern Utah that lived during the Late Cretaceous in what is now the Kaiparowits Formation of the Grand Staircase–Escalante National Monument. The type and only species, Hagryphus giganteus, is known only from an incomplete but articulated left manus and the distal portion of the left radius. It was named in 2005 by Lindsay E. Zanno and Scott D. Sampson. Hagryphus has an estimated length of 2.4–3 metres and weight of 50 kilograms.

<i>Caenagnathus</i> Genus of dinosaur from the Late Cretaceous period

Caenagnathus is a genus of caenagnathid oviraptorosaurian dinosaur from the late Cretaceous period. It is known from partial remains including lower jaws, a tail vertebra, hand bones, hind limbs, and pelvis, all found in the Dinosaur Park Formation of Alberta, Canada.

<i>Heyuannia</i> Extinct genus of dinosaurs

Heyuannia is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous epoch, in what is now China and Mongolia. It was the first oviraptorid found in China; most others were found in neighbouring Mongolia. Two species are known: H. huangi, named by Lü Junchang in 2002 from the Dalangshan Formation; and H. yanshini, originally named as a separate genus Ingenia from the Barun Goyot Formation by Rinchen Barsbold in 1981, and later renamed to Ajancingenia in 2013 due to the preoccupation of Ingenia. The latter name was eventually discarded due to various ethical issues surrounding the author.

<i>Elmisaurus</i> Extinct genus of dinosaurs

Elmisaurus is an extinct genus of caenagnathid dinosaur from the Late Cretaceous Nemegt Formation of Mongolia. It was a theropod belonging to the Oviraptorosauria.

<span class="mw-page-title-main">Nemegt Formation</span> Geological formation in Mongolia

The Nemegt Formation is a geological formation in the Gobi Desert of Mongolia, dating to the Late Cretaceous. The formation consists of river channel sediments and contains fossils of fish, turtles, crocodilians, and a diverse fauna of dinosaurs, including birds.

<i>Gigantoraptor</i> Extinct genus of dinosaurs

Gigantoraptor is a genus of large oviraptorosaur dinosaur that lived in Asia during the Late Cretaceous period. It is known from the Iren Dabasu Formation of Inner Mongolia, where the first remains were found in 2005.

The Iren Dabasu Formation is a Late Cretaceous geologic formation in the Iren Nor region of Inner Mongolia. Dinosaur remains diagnostic to the genus level are among the fossils that have been recovered from the formation. The formation was first described and defined by Henry Fairfield Osborn in 1922 and it is located in the Iren Nor region of China.

<i>Nankangia</i> Extinct genus of dinosaurs

Nankangia is an extinct genus of caenagnathoid oviraptorosaurian dinosaur known from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City of Jiangxi Province, southeastern China. It contains a single species, Nankangia jiangxiensis. N. jiangxiensis coexisted with at least four other caenagnathoids, including but not limited to Corythoraptor, Banji, Ganzhousaurus and Jiangxisaurus. The relatively short dentary and non-downturned mandibular symphysis of Nankangia suggest that it may have been more herbivorous than carnivorous. Its diet consisted of leaves and seeds.

<span class="mw-page-title-main">Timeline of oviraptorosaur research</span>

This timeline of oviraptorosaur research is a chronological listing of events in the history of paleontology focused on the oviraptorosaurs, a group of beaked, bird-like theropod dinosaurs. The early history of oviraptorosaur paleontology is characterized by taxonomic confusion due to the unusual characteristics of these dinosaurs. When initially described in 1924 Oviraptor itself was thought to be a member of the Ornithomimidae, popularly known as the "ostrich" dinosaurs, because both taxa share toothless beaks. Early caenagnathid oviraptorosaur discoveries like Caenagnathus itself were also incorrectly classified at the time, having been misidentified as birds.

<i>Apatoraptor</i> Extinct genus of dinosaurs

Apatoraptor is a genus of caenagnathid dinosaur which contains a single species, A. pennatus. The only known specimen was discovered in the Campanian-age Horseshoe Canyon Formation of Alberta.

<i>Beibeilong</i> Caenagnathid dinosaur genus from the Late Cretaceous

Beibeilong is a genus of large caenagnathid dinosaurs that lived in China during the Late Cretaceous epoch, about 96 million to 88 million years ago. The genus contains a single species, Beibeilong sinensis. The species was named and described in 2017 through analysis of an embryonic skeleton and partial nest with large eggs that were discovered in the Gaogou Formation of China between 1992 and 1993.

<i>Leptorhynchos gaddisi</i> Extinct species of dinosaur

Leptorhynchos is an extinct genus of caenagnathid theropod from the Late Cretaceous of what is now the US state of Texas, although it has been suggested to also exist in Alberta and South Dakota. The type species is L. gaddisi, and it is currently the only widely accepted valid species. The generic name of Leptorhynchos comes from the Greek "leptos" meaning "small" and "rhynchos" meaning "beak". The specific epithet is in honor of the Gaddis family, who owned the land on which the holotype was discovered.

<i>Xingtianosaurus</i> Genus of theropod dinosaur

Xingtianosaurus is an extinct genus of oviraptorosaurian theropod dinosaur that lived in what is now China during the Early Cretaceous. The type and only species, X. ganqi, was named and described in 2019. It was placed in the Caudipteridae, alongside Caudipteryx and Similicaudipteryx.

<i>Citipes</i> Genus of reptiles (fossil)

Citipes is an extinct genus of caenagnathid theropod from the Late Cretaceous Dinosaur Park Formation in Alberta, Canada. The genus contains only one species, the type species, C. elegans. The generic name of Citipes is Latin for "fleet-footed", and the specific epithet "elegans" is Latin for "elegant". The type specimen of Citipes has a convoluted taxonomic history, and has been previously assigned to the genera Ornithomimus, Macrophalangia, Elmisaurus, Chirostenotes, and Leptorhynchos before being given its own genus in 2020.

References

  1. Atkins-Weltman, K. L.; Simon, D. J.; Woodward, H. N.; Funston, G. F.; Snively, E. (2024). "A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America". PLOS ONE. 19 (1). e0294901. doi: 10.1371/journal.pone.0294901 . PMC   10807829 .
  2. Osmólska, H., P. J. Currie, et al. (2004). Oviraptorosauria. The Dinosauria. D. B. Weishampel, P. Dodson and H. Osmolska. Berkeley, University of California Press: 165-183.
  3. 1 2 Currie, P. J.; Godfrey, S. J.; et al. (1993). "New caenagnathid (Dinosauria: Theropoda) specimens from the Upper Cretaceous of North America and Asia". Canadian Journal of Earth Sciences. 30 (10–11): 2255–2272. Bibcode:1993CaJES..30.2255C. doi:10.1139/e93-196.
  4. 1 2 3 4 Sues, H. D. (1997). "On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria: Theropoda) from western North America". Journal of Vertebrate Paleontology. 17 (4): 698–716. Bibcode:1997JVPal..17..698S. doi:10.1080/02724634.1997.10011018.
  5. Barsbold, R.; Osmolska, H.; Watabe, M.; Currie, P. J.; Tsogtbaatar, K. (2000). "New oviraptorosaur (Dinosauria, Theropoda) from Mongolia: The first dinosaur with a pygostyle" (PDF). Acta Palaeontologica Polonica. 45 (2): 97–106.
  6. Sternberg, R.M. (1940). "A toothless bird from the Cretaceous of Alberta". Journal of Paleontology. 14 (1): 81–85.
  7. Osmólska, H (1976). "New light on the skull anatomy and systematic position of Oviraptor". Nature. 262 (5570): 683–684. Bibcode:1976Natur.262..683O. doi:10.1038/262683a0. S2CID   4180155.
  8. 1 2 3 Currie, P.J.; Russell, D.A. (1988). "Osteology and relationships of Chirostenotes pergracilis (Saurischia, Theropoda) from the Judith River Oldman Formation of Alberta". Canadian Journal of Earth Sciences. 25 (3): 972–986. doi:10.1139/e88-097.
  9. Cracraft, J. (1971). "Caenagnathiformes: Cretaceous birds convergent in jaw mechanism to dicynodont reptiles". Journal of Paleontology. 45: 805–809.
  10. Barsbold, R., Maryańska, T., and Osmólska, H. (1990). "Oviraptorosauria." pg. 249-258 in Weishampel, Dodson, and Osmolska (eds.) The Dinosauria, University of California Press (Berkeley).
  11. Xing, X.; Tan, Q.; Wang, J.; Zhao, X.; Tan, L. (2007). "A gigantic bird-like dinosaur from the Late Cretaceous of China". Nature. 447 (7146): 844−847. Bibcode:2007Natur.447..844X. doi:10.1038/nature05849. PMID   17565365. S2CID   6649123. Supplementary Information
  12. 1 2 Pu, H.; Zelenitsky, D. K.; Lü, J.; Currie, P. J.; Carpenter, K.; Xu, L.; Koppelhus, E. B.; Jia, S.; Xiao, L.; Chuang, H.; Li, T.; Kundrát, M.; Shen, C. (2017). "Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China". Nature Communications. 8 (14952): 14952. Bibcode:2017NatCo...814952P. doi: 10.1038/ncomms14952 . PMC   5477524 . PMID   28486442. Supplementary Information.
  13. Engelhaupt, E. (2017). "'Baby Dragon' Dinosaur Found Inside Giant Egg". National Geographic. Culture & History.
  14. Zanno, L. E.; Sampson, S. D. (2005). "A new oviraptorosaur (Theropoda; Maniraptora) from the Late Cretaceous (Campanian) of Utah". Journal of Vertebrate Paleontology. 25 (4): 897–904. doi:10.1671/0272-4634(2005)025[0897:anotmf]2.0.co;2. S2CID   131302174.
  15. 1 2 3 Lamanna, M. C.; Sues, H.-D.; Schachner, E. R.; Lyson, T. R. (2014). "A New Large-Bodied Oviraptorosaurian Theropod Dinosaur from the Latest Cretaceous of Western North America". PLOS ONE. 9 (3): e92022. Bibcode:2014PLoSO...992022L. doi: 10.1371/journal.pone.0092022 . PMC   3960162 . PMID   24647078.
  16. Pittman, Michael; Xu, Xing (2020-08-21). "Pennaraptoran Theropod Dinosaurs Past Progress and New Frontiers". Bulletin of the American Museum of Natural History. 440 (1): 1. doi:10.1206/0003-0090.440.1.1. ISSN   0003-0090.
  17. Sereno, Paul C. (1998-11-10). "A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria [41-83 ]". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 210 (1): 41–83. doi:10.1127/njgpa/210/1998/41. ISSN   0077-7749.
  18. Sternberg, C. H. (1932). "Two new theropod dinosaurs from the Belly River Formation of Alberta". The Canadian Field-Naturalist. 46: 99–105.
  19. 1 2 Longrich, N. R.; Barnes, K.; Clark, S.; Millar, L. (2013). "Caenagnathidae from the Upper Campanian Aguja Formation of West Texas, and a Revision of the Caenagnathinae". Bulletin of the Peabody Museum of Natural History. 54: 23–49. doi:10.3374/014.054.0102. S2CID   128444961.
  20. 1 2 Hendrickx, Christophe; Hartman, Scott A.; Mateus, Octávio (2015). "An overview of non-avian theropod discoveries and classification" (PDF). PalArch's Journal of Vertebrate Palaeontology. 12 (1): 1–73.
  21. Currie, P.J.; Funston, G.F.; Osmólska, H.† (2015). "New specimens of the crested theropod dinosaur Elmisaurus rarus from Mongolia". Acta Palaeontologica Polonica. 61 (1): 143–157 (2014–2016). doi: 10.4202/app.00130.2014 . S2CID   55254194.
  22. Funston, Gregory (2020-07-27). "Caenagnathids of the Dinosaur Park Formation (Campanian) of Alberta, Canada: anatomy, osteohistology, taxonomy, and evolution". Vertebrate Anatomy Morphology Palaeontology. 8: 105–153. doi: 10.18435/vamp29362 . ISSN   2292-1389.
  23. Paul, Gregory S. (2010). "Theropods". The Princeton Field Guide to Dinosaurs. Princeton: Princeton University Press. pp. 67–162. doi:10.1515/9781400836154.67b. ISBN   9781400836154.
  24. Nicholas R. Longrich; Philip J. Currie; Dong Zhi-Ming (2010). "A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Bayan Mandahu, Inner Mongolia". Palaeontology. 53 (5): 945–960. Bibcode:2010Palgy..53..945L. doi: 10.1111/j.1475-4983.2010.00968.x .
  25. Serrano-Brañas, Claudia Inés; Espinosa-Chávez, Belinda; Maccracken, S. Augusta; Barrera Guevara, Daniela; Torres-Rodríguez, Esperanza (November 2022). "First record of caenagnathid dinosaurs (Theropoda, Oviraptorosauria) from the Cerro del Pueblo Formation (Campanian, Upper Cretaceous), Coahuila, Mexico". Journal of South American Earth Sciences . 119: 104046. doi:10.1016/j.jsames.2022.104046 . Retrieved 11 November 2024 via Elsevier Science Direct.
  26. Currie, P.J.; Godfrey, S.J.; Nesov, L.A. (1994). "New caenagnathid (Dinosauria: Theropoda) specimens from the Upper Cretaceous of North America and Asia". Canadian Journal of Earth Sciences. 30 (10): 2255–2272. Bibcode:1993CaJES..30.2255C. doi:10.1139/e93-196.