Phenylmercury acetate

Last updated
Phenylmercury acetate
Phenylmercuric acetate.svg
Phenylmercury(II)-acetate-from-xtal-3D-balls.png
Names
Systematic IUPAC name
acetyloxy(phenyl)mercury
Identifiers
3D model (JSmol)
3662930
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.484 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-532-5
83357
KEGG
MeSH Phenylmercuric+acetate
PubChem CID
RTECS number
  • OV6475000
UNII
UN number 1674
  • InChI=1S/C6H5.C2H4O2.Hg/c1-2-4-6-5-3-1;1-2(3)4;/h1-5H;1H3,(H,3,4);/q;;+1/p-1 Yes check.svgY
    Key: XEBWQGVWTUSTLN-UHFFFAOYSA-M Yes check.svgY
  • InChI=1S/C6H5.C2H4O2.Hg/c1-2-4-6-5-3-1;1-2(3)4;/h1-5H;1H3,(H,3,4);/q;;+1/p-1
  • Key: XEBWQGVWTUSTLN-UHFFFAOYSA-M
  • CC(=O)O[Hg]C1=CC=CC=C1
  • CC(=O)O[Hg]c1ccccc1
Properties
C8H8HgO2
Molar mass 336.742 g·mol−1
Melting point 148 to 151 °C (298 to 304 °F; 421 to 424 K)
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H314, H372, H410
P260, P264, P270, P273, P280, P301+P310, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P314, P321, P330, P363, P391, P405, P501
Safety data sheet (SDS) Oxford MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenylmercuric acetate is an organomercury compound used as a preservative, disinfectant, and antitranspirant.

Contents

Properties

Phenylmercuric acetate forms colorless, lustrous crystals, and is soluble in ethanol, benzene, acetic acid, and sparingly in water. [1]

Applications

Phenylmercuric acetate has been used as a preservative in eyedrops and paint, disinfectant, former fungicide in agriculture, and a potential fungicide in leather processing. [1] [2] [3] It kills crabgrass, the seedlings of which are especially vulnerable, but leaves most lawn grasses intact. [4] It exhibits anti-fungal activity against a broad range of ocular pathogenic fungi, with the greatest activity against Fusarium spp, and has been investigated as a potential treatment for keratomycosis. [3]

Phenylmercuric acetate was used for disinfecting mucous membranes, but due to toxicological and ecotoxicological reasons, is no longer used. [5] Phenylmercuric acetate was used as a catalyst during commercial 3M Tartan brand polyurethane flexible floor manufacture. That flooring became popular for public buildings, especially school gymnasia, in the 1950s through the 1970s; and traces of the catalyst remained detectable in Idaho public schools as late as 2006. [6]

Hazards

Contact with phenylmercuric acetate can cause allergic reactions., [2] such as erythema and contact urticaria syndrome. [7] [8] IgE plays a crucial role in contact urticaria syndrome pathogenesis. [8]

A rare side effect of phenylmercuric acetate in eye drops is mercurialentis, the buildup of pigment on the anterior capsule of the lens. This has been estimated to affect 18 of 500 patients who have used eye drops containing phenylmercuric acetate two to four times a day for more than six years. The pigmentation is not associated with visual impairment nor any ocular abnormalities. [3]

See also

Related Research Articles

Fungicides are pesticides used to kill parasitic fungi or their spores. Fungi can cause serious damage in agriculture, resulting in losses of yield and quality. Fungicides are used both in agriculture and to fight fungal infections in animals. Fungicides are also used to control oomycetes, which are not taxonomically/genetically fungi, although sharing similar methods of infecting plants. Fungicides can either be contact, translaminar or systemic. Contact fungicides are not taken up into the plant tissue and protect only the plant where the spray is deposited. Translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to the lower, unsprayed surface. Systemic fungicides are taken up and redistributed through the xylem vessels. Few fungicides move to all parts of a plant. Some are locally systemic, and some move upward.

<i>p</i>-Phenylenediamine Chemical compound

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation. It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Formate</span> Salt or ester of formic acid

Formate is the conjugate base of formic acid. Formate is an anion or its derivatives such as ester of formic acid. The salts and esters are generally colorless.

<span class="mw-page-title-main">Oligodynamic effect</span> Toxic effect of metal ions on living cells

The oligodynamic effect is a biocidal effect of metals, especially heavy metals, that occurs even in low concentrations. This effect is attributed to the antibacterial behavior of metal ions, which are absorbed by bacteria upon contact and damage their cell membranes.

<span class="mw-page-title-main">Bronopol</span> Chemical compound

Bronopol is an organic compound that is used as an antimicrobial. It is a white solid although commercial samples appear yellow.

<span class="mw-page-title-main">Butyraldehyde</span> Chemical compound

Butyraldehyde, also known as butanal, is an organic compound with the formula CH3(CH2)2CHO. This compound is the aldehyde derivative of butane. It is a colorless flammable liquid with an unpleasant smell. It is miscible with most organic solvents.

<span class="mw-page-title-main">Ethylenediamine</span> Chemical compound

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Citronellol</span> Pair of enantiomers

Citronellol, or dihydrogeraniol, is a natural acyclic monoterpenoid. Both enantiomers occur in nature. (+)-Citronellol, which is found in citronella oils, including Cymbopogon nardus (50%), is the more common isomer. (−)-Citronellol is widespread, but particularly abundant in the oils of rose (18–55%) and Pelargonium geraniums.

<span class="mw-page-title-main">Methacrylic acid</span> Chemical compound

Methacrylic acid, abbreviated MAA, is an organic compound with the formula CH2=C(CH3)CO2H. This colorless, viscous liquid is a carboxylic acid with an acrid unpleasant odor. It is soluble in warm water and miscible with most organic solvents. Methacrylic acid is produced industrially on a large scale as a precursor to its esters, especially methyl methacrylate (MMA), and to poly(methyl methacrylate) (PMMA).

<span class="mw-page-title-main">2-Phenylphenol</span> Chemical compound

2-Phenylphenol, or o-phenylphenol, is an organic compound. In terms of structure, it is one of the monohydroxylated isomers of biphenyl. It is a white solid. It is a biocide used as a preservative with E number E231 and under the trade names Dowicide, Torsite, Fungal, Preventol, Nipacide and many others.

<span class="mw-page-title-main">Phenoxyethanol</span> Chemical compound

Phenoxyethanol is the organic compound with the formula C6H5OC2H4OH. It is a colorless oily liquid. It can be classified as a glycol ether and a phenol ether. It is a common preservative in vaccine formulations. It has a faint rose-like aroma.

<span class="mw-page-title-main">Dithiocarbamate</span> Chemical group (>N–C(=S)–S–)

In organic chemistry, a dithiocarbamate is a functional group with the general formula R2N−C(=S)−S−R and structure >N−C(=S)−S−. It is the analog of a carbamate in which both oxygen atoms are replaced by sulfur atoms.

<span class="mw-page-title-main">2,4,6-Trichlorophenol</span> Chemical compound

2,4,6-Trichlorophenol, also known as TCP, phenaclor, Dowicide 2S, Dowcide 2S, omal, is a chlorinated phenol that has been used as a fungicide, herbicide, insecticide, antiseptic, defoliant, and glue preservative. It is a clear to yellowish crystalline solid with a strong, phenolic odor. It decomposes on heating to produce toxic and corrosive fumes including hydrogen chloride and chlorine.

<span class="mw-page-title-main">DMDM hydantoin</span> Chemical compound

DMDM hydantoin is an antimicrobial formaldehyde releaser preservative with the trade name Glydant. DMDM hydantoin is an organic compound belonging to a class of compounds known as hydantoins. It is used in the cosmetics industry and found in products like shampoos, hair conditioners, hair gels, and skin care products.

p-Chlorocresol, or 4-chloro-3-methylphenol (ClC6H3CH3OH), also known as p-chloro-m-cresol, is a potent disinfectant and antiseptic. It appears as a pinkish white crystalline solid. It is also used as a preservative in cosmetics and medicinal products for both humans and animals. It is used as an active ingredient in some preparations of veterinary medicines for tropical, oral and parenteral use. Normally, the concentration of p-Chlorocresol in oral and parenteral veterinary products are 0.1-0.2%. Concentrations are higher (~0.5%) in tropical veterinary products. p-Chlorocresol contains microbial activity against both gram positive and gram negative bacteria and fungi.

Methyl vinyl ether is an organic compound with the chemical formula CH3OCH=CH2. A colorless gas, it is the simplest enol ether. It is used as a synthetic building block, as is the related compound ethyl vinyl ether (a liquid at room temperature).

In industrial chemistry, carboalkoxylation is a process for converting alkenes to esters. This reaction is a form of carbonylation. A closely related reaction is hydrocarboxylation, which employs water in place of alcohols.

<span class="mw-page-title-main">Phenylmercuric nitrate</span> Organomercury compound with powerful antiseptic and antifungal effects

Phenylmercuric nitrate is an organomercury compound with powerful antiseptic and antifungal effects. It was once commonly used as a topical solution for disinfecting wounds, but as with all organomercury compounds it is highly toxic, especially to the kidneys, and is no longer used in this application. However it is still used in low concentrations as a preservative in eye drops for ophthalmic use, making it one of the few organomercury derivatives remaining in current medical use.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

References

  1. 1 2 Simon, Matthias; Jönk, Peter; Wühl-Couturier, Gabriele; Halbach, Stefan (2006). "Mercury, Mercury Alloys, and Mercury Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a16_269.pub2. ISBN   978-3-527-30673-2.
  2. 1 2 Geier, J.; Lessmann, H.; Uter, W.; Schnuch, A. (2005). "Patch testing with phenylmercuric acetate". Contact Dermatitis. 53 (2): 117–8. doi:10.1111/j.0105-1873.2005.0650d.x. PMID   16033409. S2CID   42906373.
  3. 1 2 3 Xu, Y.; Zhao, D.; Gao, C.; Zhou, L.; Pang, G.; Sun, S. (2012). "In vitro activity of phenylmercuric acetate against ocular pathogenic fungi". Journal of Antimicrobial Chemotherapy . 67 (8): 1941–4. doi: 10.1093/jac/dks133 . PMID   22514262.
  4. Sunset Western Garden Book (1954), p.69
  5. Siebert, Jörg; Harke, Hans-Peter (2009). "Disinfectants". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a08_551.pub2. ISBN   978-3-527-30673-2.
  6. Beaulieu, Harry J.; Beaulieu, Serrita; Brown, Chris (2008). "Phenyl Mercuric Acetate (PMA): Mercury-Bearing Flexible Gymnasium Floors in Schools — Evaluation of Hazards and Controlled Abatement". Journal of Occupational and Environmental Hygiene. 5 (6): 360–6. doi:10.1080/15459620802017425. PMID   18365889. S2CID   43701302.
  7. Maibach, H. I.; Johnson, H. L. (1975). "Contact Urticaria Syndrome: Contact Urticaria to Diethyltoluamide (Immediate-Type Hypersensitivity)". Archives of Dermatology. 111 (6): 726–30. doi:10.1001/archderm.1975.01630180054004. PMID   1137416.
  8. 1 2 Torresani, Claudio; Caprari, Elisabetta; Manara, Gian Carlo (1993). "Contact urticaria syndrome due to phyenylmercuric acetate". Contact Dermatitis. 29 (5): 282–3. doi:10.1111/j.1600-0536.1993.tb03574.x. PMID   8112079. S2CID   46255307.