Phosphoribosylanthranilate isomerase

Last updated
phosphoribosylanthranilate isomerase
Phosphoribosylanthranilate isomerase Structure.png
3D rendering of Phosophoribosylanthranilate Isomerase
Identifiers
EC no. 5.3.1.24
CAS no. 37259-82-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a phosphoribosylanthranilate isomerase (PRAI) (EC 5.3.1.24) is an enzyme that catalyzes the third step of the synthesis of the amino acid tryptophan. [1]

Contents

This enzyme participates in the phenylalanine, tyrosine and tryptophan biosynthesis pathway, also known as the aromatic amino acid biosynthesis pathway

In yeast, it is encoded by the TRP1 gene. [2]

Nomenclature

This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The systematic name of this enzyme class is N-(5-phospho-beta-D-ribosyl)anthranilate aldose-ketose-isomerase. Other names in common use include:

Reaction [4]

Phosphoribosylanthranilate isomerase is one of the many enzymes within the biosynthesis pathway of tryptophan (an essential amino acid). The upstream* pathway substrates and intermediates are shown below (Fig. 2).

As seen in Fig. 3, N-(5'-phosphoribosyl)-anthranilate via this enzyme is converted into 1-(o-carboxyphenylamino)-1-deoxribulose 5-phosphate. As the name phosphoribosylanthranilate isomerase suggests, it functions as an isomerase, rearranging the parts of the molecule without adding or removing molecules or atoms.

The reaction seen in Fig. 3, is an intramolecular redox (reduction-oxidation) reaction. [5] Its first step involves a proton transfer. This product intermediate, an enolamine, is fluorescent, which is useful for kinetic studies

within this pathway. [5] However, this product is unstable, and quickly isomerases into an α-amino keto.

Kinetics

Michaelis–Menten kinetics data, is given in the table below for PRAI and indole-glycerol-phosphate synthase (IGPS, EC 4.1.1.48). [6]

Table 1: Kinetic Data
EnzymeTemperature (°C)Km

(μM)

kcat

(1/sec)

tPRAI250.2803.7
450.39013.5
600.73038.5
801.030116.8
tIGPS250.0060.11
450.0140.75
600.0533.24
800.12315.4

Structure

Fig 6: Structure of N-(5'-phosphoribosyl) anthranilate isomerase from Pyrococcus furiosus Structure of N-(5'-phosphoribosyl)anthranilate isomerase from Pyrococcus furiosus.png
Fig 6: Structure of N-(5'-phosphoribosyl) anthranilate isomerase from Pyrococcus furiosus

Depending on the microorganism PRAI's structure can vary between a mono-functional enzyme (monomeric and labile) or a stable bi-functional dimeric enzyme. Within Saccharomyces cerevisiae, Bacillus subtilis, Pseudomonas putida, and Acinetobacter calcoaceticus the enzyme is monmeric. [7] In contrast, in hyperthermophile Thermotoga maritima,Escherichia coli (Fig. 5), Salmonella typhimurium, and Aerobacter aerogenes, and Serratia marcescens, it is a bi-functional enzyme with indoleglycerol phosphate synthase as the paired enzyme. [8]

The crystal structure has been characterized for a variety of the above listed microorganisms. The known 2.0 A structure of PRAI from Pyrococcus furiosus shows that tPRAI has a TIM-barrel fold (Fig. 6). PRAI derived from Thermococcus kodakaraensis also expresses a similar TIM-barrel fold structure. [7] The subunits of tPRAI associate via the N-terminal faces of their central beta-barrels. Two long, symmetry-related loops that protrude reciprocally into cavities of the other subunit provide for multiple hydrophobic interactions. Moreover, the side chains of the N-terminal methionines and the C-terminal leucines of both subunits are immobilized in a hydrophobic cluster, and the number of salt bridges is increased in tPRAI. These features appear to be mainly responsible for the high thermostability of tPRAI. [9]

Fig 5: Three dimensional structure of the bi-functional PRAI: IGPS enzyme from E. Coli

Fig 7: IGPS (purple), shared (orange), and PRAI (turquoise) reaction domains PRAI Ecoli.png
Fig 5: Three dimensional structure of the bi-functional PRAI: IGPS enzyme from E. Coli
Fig 7: IGPS (purple), shared (orange), and PRAI (turquoise) reaction domains Fig 7 pymol enzyme.png
Fig 7: IGPS (purple), shared (orange), and PRAI (turquoise) reaction domains

The bi-functional version of this enzyme isolated from E. Coli (Fig. 5) performs two steps within the Tryptophan pathway. Referencing Fig. 7, the N-terminal catalyzes the IGPS reaction (residues ~1–289 purple), and the C-terminal domain performs the PRAI reaction (residues ~158–452 turquoise). Although these domains overlap (orange), the active sites are not overlapping, and studies have shown that mono-functional enzymes composing of these two domains are still able to produce a functional tryptophan bio-synthetic pathway. [10]

The βα loops are responsible for the activity of this enzyme, and the αβ loops are involved in the protein's stability. [8]

More details on the discovery of this enzyme's structure can be found in Willmann's paper. [11]

Active site [7]

Specifically, for phosphoribosyl anthranilate isomerase, TkTrpF, from Thermococcus kodakaraensis. The active site for the Amadori rearrangement, was determined to be Cys8 (acting as the general base) and Asp135 (as the general acid). [12]

Inhibitors

An enzyme inhibitor [13] is molecule that binds to an enzyme that therefore decreases the activity of the protein. The following molecules have been shown to inhibit PRAI activity:

Reduced 1-(2-carboxyphenylamino )-1-deoxy-D-ribulose 5-phosphate [5, 6,8); Indoleglycerol phosphate (8); Indolepropanol phosphate (8); MnCI2 CoCI2 [16); CuS04 (16); More (chemically synthesized N-(5-phospho-betaD-ribosyl)anthranilate contains inhibitors, but not if it is generated by anthranilate phosphoribosyltransferase)

Molecular weight [3]

26300 (Bacillus subtilis, gel filtration)

45000 (Aeromonas formicans, Serratia marinorubra, gel filtration, indole-3-

glycerol-phosphate synthetase/N-5'-phosphoribosylanthranilate isomerase

complex)

46000 (E. coli, sedimentation equilibrium)

47000 (Citrobacter ballerupensis, gel filtration, indole-3-glycerol-phosphate

synthetase/N-5'-phosphoribosylanthranilate isomerase complex)

48000 (Serratia marcescens, Erwinia carotovora, gel filtration, indole-3-glycerol-phosphate synthetase/N-5'-phosphoribosylanthranilate

isomerase complex )

49370 (E. coli, calculated from gene sequence)

53000 (Proteus vulgaris, gel filtration, indole-3-glycerol-phosphate synthetase/

N-5'-phosphoribosylanthranilate isomerase complex)

160000 (Neurospora crassa, gel filtration, component lib of the anthranilate

synthetase complex has N-(5'-phosphoribosyl)anthranilate isomerase and

indole-3-glycerol phosphate synthetase activities)

185000 (Hansenula henricii, gel filtration, indole-3-glycerol-phosphate synthetase/

N-5'-phosphoribosylanthranilate isomerase complex)

Homologous genes

There are homologous genes which produce this enzyme in plant species such as Arabidopsis thaliana and Oryza sativa (Asian Rice). One form of bacterium it is found in Thermotoga maritima.

Phosphoribosylanthranilate isomerase is also found in various forms of fungi such as Kluyveromyces lactis (yeast), Saccharomyces cerevisiae (yeast), and Ashbya gossypii . [14]

A list of genes encoding for PRAI can also be found on KEGG Enzyme database. [15]

Related Research Articles

<span class="mw-page-title-main">Tryptophan synthase</span>

Tryptophan synthase or tryptophan synthetase is an enzyme that catalyzes the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 Ångstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.

Antimycins are produced as secondary metabolites by Streptomyces bacteria, a soil bacteria. These specialized metabolites likely function to kill neighboring organisms in order to provide the streptomyces bacteria with a competitive edge.

Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi, from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

<span class="mw-page-title-main">Phosphoribosyl pyrophosphate</span> Chemical compound

Phosphoribosyl pyrophosphate (PRPP) is a pentose phosphate. It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, as well as in pyrimidine nucleotide formation. Hence it is a building block for DNA and RNA. The vitamins thiamine and cobalamin, and the amino acid tryptophan also contain fragments derived from PRPP. It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase:

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid biosynthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

Phosphoribosylformylglycinamidine cyclo-ligase is the fifth enzyme in the de novo synthesis of purine nucleotides. It catalyzes the reaction to form 5-aminoimidazole ribotide (AIR) from formylglycinamidine-ribonucleotide FGAM. This reaction closes the ring and produces a 5-membered imidazole ring of the purine nucleus (AIR):

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Indole-3-glycerol-phosphate synthase</span> Class of enzymes

The enzyme indole-3-glycerol-phosphate synthase (IGPS) (EC 4.1.1.48) catalyzes the chemical reaction

<span class="mw-page-title-main">Aminodeoxychorismate synthase</span>

In enzymology, an aminodeoxychorismate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylaminoimidazolesuccinocarboxamide synthase</span> Class of enzymes

In molecular biology, the protein domain SAICAR synthase is an enzyme which catalyses a reaction to create SAICAR. In enzymology, this enzyme is also known as phosphoribosylaminoimidazolesuccinocarboxamide synthase. It is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-dehydroquinate synthase</span> Enzyme

The enzyme 3-dehydroquinate synthase catalyzes the chemical reaction

The enzyme methylglyoxal synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Anthranilate phosphoribosyltransferase</span> InterPro Family

In enzymology, an anthranilate phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">5-Aminoimidazole ribotide</span> Chemical compound

5′-Phosphoribosyl-5-aminoimidazole is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from AIR. It is an intermediate in the adenine pathway and is synthesized from 5′-phosphoribosylformylglycinamidine by AIR synthetase.

<span class="mw-page-title-main">DAHP synthase</span> Class of enzymes

3-Deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase is the first enzyme in a series of metabolic reactions known as the shikimate pathway, which is responsible for the biosynthesis of the amino acids phenylalanine, tyrosine, and tryptophan. Since it is the first enzyme in the shikimate pathway, it controls the amount of carbon entering the pathway. Enzyme inhibition is the primary method of regulating the amount of carbon entering the pathway. Forms of this enzyme differ between organisms, but can be considered DAHP synthase based upon the reaction that is catalyzed by this enzyme.

<span class="mw-page-title-main">EPSP synthase</span> Enzyme produced by plants and microorganisms

5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is an enzyme produced by plants and microorganisms. EPSPS catalyzes the chemical reaction:

3-Deoxy-<small>D</small>-<i>arabino</i>-heptulosonic acid 7-phosphate Chemical compound

3-Deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) is a 7-carbon ulosonic acid. This compound is found in the shikimic acid biosynthesis pathway and is an intermediate in the production of aromatic amino acids.

Tryptophan synthase (indole-salvaging) (EC 4.2.1.122, tryptophan synthase beta2) is an enzyme with systematic name L-serine hydro-lyase (adding indole, L-tryptophan-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Li Jiayang</span> Chinese agronomist, Vice Minister of Agriculture (born 1956)

Li Jiayang is a Chinese agronomist and geneticist. He is Vice Minister of Agriculture in China and President of the Chinese Academy of Agricultural Sciences (CAAS). He is also Professor and Principal investigator at the Institute of Genetics and Development at the Chinese Academy of Sciences (CAS).

References

  1. Creighton TE, Yanofsky C (1970). "Chorismate to tryptophan (Escherichia coli)—anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase". Metabolism of Amino Acids and Amines Part A. Methods in Enzymology. Vol. 17A. pp. 365–380. doi:10.1016/0076-6879(71)17215-1. ISBN   9780121818746.
  2. "TRP1/YDR007W Summary". Saccharomyces genome database. Stanford University.
  3. 1 2 3 Schomburg, Dietmar; Stephan, Dörte (1994). Enzyme handbook. Springer-Verlag. ISBN   9783642579424. OCLC   859587801.
  4. Lubert Stryer (2019-03-25). Biochemistry. Macmillan Learning. ISBN   9781319114657. OCLC   1052398743.
  5. 1 2 Hommel U, Eberhard M, Kirschner K (April 1995). "Phosphoribosyl anthranilate isomerase catalyzes a reversible amadori reaction". Biochemistry. 34 (16): 5429–39. doi:10.1021/bi00016a014. PMID   7727401.
  6. Sterner R, Merz A, Thoma R, Kirschner K (2001). "Phosphoribosylanthranilate isomerase and indoleglycerol-phosphate synthase: Tryptophan biosynthetic enzymes from Thermotoga maritima". Hyperthermophilic enzymes Part B. Methods in Enzymology. Vol. 331. pp. 270–80. doi:10.1016/S0076-6879(01)31064-9. ISBN   9780121822323. PMID   11265469.
  7. 1 2 3 Perveen, S.; Rashid, N.; Papageorgiou, A.C. (2016-11-09). "Phosphoribosyl anthranilate isomerase from Thermococcus kodakaraensis". doi:10.2210/pdb5lhf/pdb.{{cite journal}}: Cite journal requires |journal= (help)
  8. 1 2 Thoma R, Hennig M, Sterner R, Kirschner K (March 2000). "Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima". Structure. 8 (3): 265–76. doi: 10.1016/s0969-2126(00)00106-4 . PMID   10745009.
  9. Hennig M, Sterner R, Kirschner K, Jansonius JN (May 1997). "Crystal structure at 2.0 A resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability". Biochemistry. 36 (20): 6009–16. doi:10.1021/bi962718q. PMID   9166771.
  10. Eberhard M, Tsai-Pflugfelder M, Bolewska K, Hommel U, Kirschner K (April 1995). "Indoleglycerol phosphate synthase-phosphoribosyl anthranilate isomerase: comparison of the bifunctional enzyme from Escherichia coli with engineered monofunctional domains". Biochemistry. 34 (16): 5419–28. doi:10.1021/bi00016a013. PMID   7727400.
  11. PDB: 1PII ; Wilmanns M, Priestle JP, Niermann T, Jansonius JN (January 1992). "Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 A resolution". Journal of Molecular Biology. 223 (2): 477–507. doi:10.1016/0022-2836(92)90665-7. PMID   1738159.
  12. Pitt, Charles (2002). Sax, Adolphe (opera). Oxford Music Online. Oxford University Press. doi:10.1093/gmo/9781561592630.article.o006145.
  13. "Enzyme→ Inhibitor List: M" , Handbook of Enzyme Inhibitors, Wiley-VCH Verlag GmbH, 1999, pp.  894–956, doi:10.1002/9783527618330.ch13, ISBN   9783527618330
  14. "Blast search for phosphoribosylanthranilate isomerase". HomoloGene Database. National Center for Biotechnology Information.
  15. "KEGG Enzyme".

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR001240