Pinch (plasma physics)

Last updated
Pinch phenomena
Lightning over Oradea Romania 3.jpg
Lightning discharge bolts showing electromagnetically pinched plasma filaments
Crushed rod pollock barraclough.jpg
A 1905 study of pinches, where electric lightning was used to create a Z-pinch inside a metal tube. [1]
TWK pinch.jpg
A current-driven toroidal Z-pinch in a krypton plasma

A pinch (or: Bennett pinch [2] (after Willard Harrison Bennett), electromagnetic pinch, [3] magnetic pinch, [4] pinch effect, [5] or plasma pinch. [6] ) is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power. [7]

Contents

Pinches occur naturally in electrical discharges such as lightning bolts, [8] planetary auroras, [9] current sheets, [10] and solar flares. [11]

Basic mechanism

This is a basic explanation of how a pinch works. (1) Pinches apply a high voltage and current across a tube. This tube is filled with a gas, typically a fusion fuel such as deuterium. If the product of the voltage & the charge is higher than the ionization energy of the gas the gas ionizes. (2) Current jumps across this gap. (3) The current makes a magnetic field which is perpendicular to the current. This magnetic field pulls the material together. (4) These atoms can get close enough to fuse. Plasma Pinch Mechanism.png
This is a basic explanation of how a pinch works. (1) Pinches apply a high voltage and current across a tube. This tube is filled with a gas, typically a fusion fuel such as deuterium. If the product of the voltage & the charge is higher than the ionization energy of the gas the gas ionizes. (2) Current jumps across this gap. (3) The current makes a magnetic field which is perpendicular to the current. This magnetic field pulls the material together. (4) These atoms can get close enough to fuse.

Types

An example of a man-made pinch. Here Z-pinches constrain a plasma inside filaments of electrical discharge from a Tesla coil Plasma-filaments.jpg
An example of a man-made pinch. Here Z-pinches constrain a plasma inside filaments of electrical discharge from a Tesla coil
The MagLIF concept, a combination of a Z-pinch and a laser beam MagLif Concept.png
The MagLIF concept, a combination of a Z-pinch and a laser beam

Pinches exist in nature and in laboratories. Pinches differ in their geometry and operating forces. [12] These include:

Common behavior

Pinches may become unstable. [22] They radiate energy across the whole electromagnetic spectrum including radio waves, microwaves, infrared, x-rays, [23] gamma rays, [24] synchrotron radiation, [25] and visible light. They also produce neutrons, as a product of fusion. [26]

Model of the kink modes that form inside a pinch Kink Modes Model.png
Model of the kink modes that form inside a pinch

Applications and devices

Pinches are used to generate X-rays and the intense magnetic fields generated are used in electromagnetic forming of metals. They also have applications in particle beams [27] including particle beam weapons, [28] astrophysics studies [29] and it has been proposed to use them in space propulsion. [30] A number of large pinch machines have been built to study fusion power; here are several:

Crushing cans with the pinch effect

Pinched aluminium can, produced via a pulsed magnetic field created by rapidly discharging 2 kilojoules from a high voltage capacitor bank into a 3-turn coil of heavy gauge wire. Aluminium-can-white.jpg
Pinched aluminium can, produced via a pulsed magnetic field created by rapidly discharging 2 kilojoules from a high voltage capacitor bank into a 3-turn coil of heavy gauge wire.

Many high-voltage electronics enthusiasts make their own crude electromagnetic forming devices. [32] [33] [34] They use pulsed power techniques to produce a theta pinch able to crush an aluminium soft drink can using the Lorentz forces created when large currents are induced in the can by the strong magnetic field of the primary coil. [35] [36]

An electromagnetic aluminium can crusher consists of four main components: a high-voltage DC power supply, which provides a source of electrical energy, a large energy discharge capacitor to accumulate the electrical energy, a high voltage switch or spark gap, and a robust coil (capable of surviving high magnetic pressure) through which the stored electrical energy can be quickly discharged in order to generate a correspondingly strong pinching magnetic field (see diagram below).

Electromagnetic pinch "can crusher": schematic diagram Can-pincher.png
Electromagnetic pinch "can crusher": schematic diagram

In practice, such a device is somewhat more sophisticated than the schematic diagram suggests, including electrical components that control the current in order to maximize the resulting pinch, and to ensure that the device works safely. For more details, see the notes. [37]

History

The Institute of Electrical and Electronics Engineers emblem shows the basic features of an azimuthal magnetic pinch. Ieee-emblem.jpg
The Institute of Electrical and Electronics Engineers emblem shows the basic features of an azimuthal magnetic pinch.

The first creation of a Z-pinch in the laboratory may have occurred in 1790 in Holland when Martinus van Marum created an explosion by discharging 100 Leyden jars into a wire. [39] The phenomenon was not understood until 1905, when Pollock and Barraclough [1] investigated a compressed and distorted length of copper tube from a lightning rod after it had been struck by lightning. Their analysis showed that the forces due to the interaction of the large current flow with its own magnetic field could have caused the compression and distortion. [40] A similar, and apparently independent, theoretical analysis of the pinch effect in liquid metals was published by Northrup in 1907. [41] The next major development was the publication in 1934 of an analysis of the radial pressure balance in a static Z-pinch by Bennett [42] (see the following section for details).

Thereafter, the experimental and theoretical progress on pinches was driven by fusion power research. In their article on the "Wire-array Z-pinch: a powerful x-ray source for ICF", M G Haines et al., wrote on the "Early history of Z-pinches". [43]

In 1946 Thompson and Blackman submitted a patent for a fusion reactor based on a toroidal Z-pinch [44] with an additional vertical magnetic field. But in 1954 Kruskal and Schwarzschild [45] published their theory of MHD instabilities in a Z-pinch. In 1956, Kurchatov gave his famous Harwell lecture showing nonthermal neutrons and the presence of m = 0 and m = 1 instabilities in a deuterium pinch. [46] In 1957 Pease [47] and Braginskii [48] [49] independently predicted radiative collapse in a Z-pinch under pressure balance when in hydrogen the current exceeds 1.4 MA. (The viscous rather than resistive dissipation of magnetic energy discussed above and in [50] would however prevent radiative collapse).

In 1958, the world's first controlled thermonuclear fusion experiment was accomplished using a theta-pinch machine named Scylla I at the Los Alamos National Laboratory. A cylinder full of deuterium was converted into a plasma and compressed to 15 million degrees Celsius under a theta-pinch effect. [7] Lastly, at Imperial College in 1960, led by R Latham, the Plateau–Rayleigh instability was shown, and its growth rate measured in a dynamic Z-pinch. [51]

Equilibrium analysis

One dimension

In plasma physics three pinch geometries are commonly studied: the θ-pinch, the Z-pinch, and the screw pinch. These are cylindrically shaped. The cylinder is symmetric in the axial (z) direction and the azimuthal (θ) directions. The one-dimensional pinches are named for the direction the current travels.

The θ-pinch

A sketch of the th-pinch equilibrium. The
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
z-directed magnetic field corresponds to a
th-directed plasma current. Thet pinch.png
A sketch of the θ-pinch equilibrium. The   z-directed magnetic field corresponds to a   θ-directed plasma current.

The θ-pinch has a magnetic field directed in the z direction and a large diamagnetic current directed in the θ direction. Using Ampère's circuital law (discarding the displacement term)

Since B is only a function of r we can simplify this to

So J points in the θ direction.

Thus, the equilibrium condition () for the θ-pinch reads:

θ-pinches tend to be resistant to plasma instabilities; This is due in part to Alfvén's theorem (also known as the frozen-in flux theorem).

The Z-pinch

A sketch of the Z-pinch equilibrium. A
th-directed magnetic field corresponds to a
z-directed plasma current. Z pinch.png
A sketch of the Z-pinch equilibrium. A   θ-directed magnetic field corresponds to a   z-directed plasma current.

The Z-pinch has a magnetic field in the θ direction and a current J flowing in the z direction. Again, by electrostatic Ampère's law,

Thus, the equilibrium condition, , for the Z-pinch reads:

Although Z-pinches satisfy the MHD equilibrium condition, it is important to note that this is an unstable equilibrium, resulting in various instabilies such as the m = 0 instability ('sausage'), m = 1 instability ('kink'), and various other higher order instabilities. [52]

The screw pinch

The screw pinch is an effort to combine the stability aspects of the θ-pinch and the confinement aspects of the Z-pinch. Referring once again to Ampère's law,

But this time, the B field has a θ component and a z component

So this time J has a component in the z direction and a component in the θ direction.

Finally, the equilibrium condition () for the screw pinch reads:

The screw pinch via colliding optical vortices

The screw pinch might be produced in laser plasma by colliding optical vortices of ultrashort duration. [53] For this purpose optical vortices should be phase-conjugated. [54] The magnetic field distribution is given here again via Ampère's law:

Two dimensions

A toroidal coordinate system in common use in plasma physics.
The red arrow denotes the poloidal direction (th)
The blue arrow denotes the toroidal direction (ph) Toroidal coord.png
A toroidal coordinate system in common use in plasma physics.
  The red arrow denotes the poloidal direction (θ)
  The blue arrow denotes the toroidal direction (φ)

A common problem with one-dimensional pinches is the end losses. Most of the motion of particles is along the magnetic field. With the θ-pinch and the screw-pinch, this leads particles out of the end of the machine very quickly, leading to a loss of mass and energy. Along with this problem, the Z-pinch has major stability problems. Though particles can be reflected to some extent with magnetic mirrors, even these allow many particles to pass. A common method of beating these end losses, is to bend the cylinder around into a torus. Unfortunately this breaks θ symmetry, as paths on the inner portion (inboard side) of the torus are shorter than similar paths on the outer portion (outboard side). Thus, a new theory is needed. This gives rise to the famous Grad–Shafranov equation. Numerical solutions to the Grad–Shafranov equation have also yielded some equilibria, most notably that of the reversed field pinch.

Three dimensions

As of 2015, there is no coherent analytical theory for three-dimensional equilibria. The general approach to finding such equilibria is to solve the vacuum ideal MHD equations. Numerical solutions have yielded designs for stellarators. Some machines take advantage of simplification techniques such as helical symmetry (for example University of Wisconsin's Helically Symmetric eXperiment). However, for an arbitrary three-dimensional configuration, an equilibrium relation, similar to that of the 1-D configurations exists: [55]

Where κ is the curvature vector defined as:

with b the unit vector tangent to B.

Formal treatment

A stream of water pinching into droplets has been suggested as an analogy to the electromagnetic pinch. Gravity accelerates free-falling water which causes the water column to constrict. Surface tension breaks the narrowing water column into droplets (not shown, see Plateau-Rayleigh instability). This is analogous to the magnetic field suggested as the cause of pinching in bead lightning. The morphology (shape) is similar to the so-called sausage instability in plasma. Water-pinching.jpg
A stream of water pinching into droplets has been suggested as an analogy to the electromagnetic pinch. Gravity accelerates free-falling water which causes the water column to constrict. Surface tension breaks the narrowing water column into droplets (not shown, see Plateau–Rayleigh instability). This is analogous to the magnetic field suggested as the cause of pinching in bead lightning. The morphology (shape) is similar to the so-called sausage instability in plasma.

The Bennett relation

Consider a cylindrical column of fully ionized quasineutral plasma, with an axial electric field, producing an axial current density, j, and associated azimuthal magnetic field, B. As the current flows through its own magnetic field, a pinch is generated with an inward radial force density of j x B. In a steady state with forces balancing:

where ∇p is the magnetic pressure gradient, and pe and pi are the electron and ion pressures, respectively. Then using Maxwell's equation and the ideal gas law , we derive:

(the Bennett relation)

where N is the number of electrons per unit length along the axis, Te and Ti are the electron and ion temperatures, I is the total beam current, and k is the Boltzmann constant.

The generalized Bennett relation

The generalized Bennett relation considers a current-carrying magnetic-field-aligned cylindrical plasma pinch undergoing rotation at angular frequency o Generalized Bennett Relation diagram.png
The generalized Bennett relation considers a current-carrying magnetic-field-aligned cylindrical plasma pinch undergoing rotation at angular frequency ω

The generalized Bennett relation considers a current-carrying magnetic-field-aligned cylindrical plasma pinch undergoing rotation at angular frequency ω. Along the axis of the plasma cylinder flows a current density jz, resulting in an azimuthal magnetic field Βφ. Originally derived by Witalis, [58] the generalized Bennett relation results in: [59]

The positive terms in the equation are expansional forces while the negative terms represent beam compressional forces.

The Carlqvist relation

The Carlqvist relation, published by Per Carlqvist in 1988, [12] is a specialization of the generalized Bennett relation (above), for the case that the kinetic pressure is much smaller at the border of the pinch than in the inner parts. It takes the form

and is applicable to many space plasmas.

The Bennett pinch showing the total current (I) versus the number of particles per unit length (N). The chart illustrates four physically distinct regions. The plasma temperature is 20 K, the mean particle mass 3x10 kg, and DWBz is the excess magnetic energy per unit length due to the axial magnetic field Bz. The plasma is assumed to be non-rotational, and the kinetic pressure at the edges is much smaller than inside. Bennett Pinch graph.png
The Bennett pinch showing the total current (I) versus the number of particles per unit length (N). The chart illustrates four physically distinct regions. The plasma temperature is 20 K, the mean particle mass 3×10 kg, and ΔWBz is the excess magnetic energy per unit length due to the axial magnetic field Bz. The plasma is assumed to be non-rotational, and the kinetic pressure at the edges is much smaller than inside.

The Carlqvist relation can be illustrated (see right), showing the total current (I) versus the number of particles per unit length (N) in a Bennett pinch. The chart illustrates four physically distinct regions. The plasma temperature is quite cold (Ti = Te = Tn = 20 K), containing mainly hydrogen with a mean particle mass 3×10−27 kg. The thermokinetic energy Wk >> πa2pk(a). The curves, ΔWBz show different amounts of excess magnetic energy per unit length due to the axial magnetic field Bz. The plasma is assumed to be non-rotational, and the kinetic pressure at the edges is much smaller than inside.

Chart regions: (a) In the top-left region, the pinching force dominates. (b) Towards the bottom, outward kinetic pressures balance inwards magnetic pressure, and the total pressure is constant. (c) To the right of the vertical line ΔWBz = 0, the magnetic pressures balances the gravitational pressure, and the pinching force is negligible. (d) To the left of the sloping curve ΔWBz = 0, the gravitational force is negligible. Note that the chart shows a special case of the Carlqvist relation, and if it is replaced by the more general Bennett relation, then the designated regions of the chart are not valid.

Carlqvist further notes that by using the relations above, and a derivative, it is possible to describe the Bennett pinch, the Jeans criterion (for gravitational instability, [60] in one and two dimensions), force-free magnetic fields, gravitationally balanced magnetic pressures, and continuous transitions between these states.

References in culture

A fictionalized pinch-generating device was used in Ocean's Eleven , where it was used to disrupt Las Vegas's power grid just long enough for the characters to begin their heist. [61]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

In physics and engineering, magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Biot–Savart law</span> Important law of classical magnetism

In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

<span class="mw-page-title-main">Magnetic dipole</span> Magnetic analogue of the electric dipole

In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant.

<span class="mw-page-title-main">Solenoid</span> Type of electromagnet formed by a coil of wire

A solenoid is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons with which it interacts to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature.

The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.

The Grad–Shafranov equation is the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hicks equation from fluid dynamics. This equation is a two-dimensional, nonlinear, elliptic partial differential equation obtained from the reduction of the ideal MHD equations to two dimensions, often for the case of toroidal axisymmetry. Taking as the cylindrical coordinates, the flux function is governed by the equation,

In theoretical physics, the Weinberg–Witten (WW) theorem, proved by Steven Weinberg and Edward Witten, states that massless particles (either composite or elementary) with spin j > 1/2 cannot carry a Lorentz-covariant current, while massless particles with spin j > 1 cannot carry a Lorentz-covariant stress-energy. The theorem is usually interpreted to mean that the graviton (j = 2) cannot be a composite particle in a relativistic quantum field theory.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

Gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial scales comparable to the gyroradius and frequencies much lower than the particle cyclotron frequencies. These particular scales have been experimentally shown to be appropriate for modeling plasma turbulence. The trajectory of charged particles in a magnetic field is a helix that winds around the field line. This trajectory can be decomposed into a relatively slow motion of the guiding center along the field line and a fast circular motion, called gyromotion. For most plasma behavior, this gyromotion is irrelevant. Averaging over this gyromotion reduces the equations to six dimensions rather than the seven. Because of this simplification, gyrokinetics governs the evolution of charged rings with a guiding center position, instead of gyrating charged particles.

For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature, that is

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.

References

  1. 1 2 Pollock J A and Barraclough S (1905) Proc. R. Soc. New South Wales 39 131
  2. Buneman, O. (1961). "The Bennett Pinch". In Drummond, James E. (ed.). Plasma Physics. New York: McGraw-Hill. p. 202. Bibcode:1961plph.conf..202B. LOC 60-12766.
  3. Lee, S. (1983). "Energy balance and the radius of electromagnetically pinched plasma columns". Plasma Physics. 25 (5): 571–576. Bibcode:1983PlPh...25..571L. doi:10.1088/0032-1028/25/5/009.
  4. Schmidt, Helmut (1966). "Formation of a Magnetic Pinch in InSb and the Possibility of Population Inversion in the Pinch". Physical Review. 149 (2): 564–573. Bibcode:1966PhRv..149..564S. doi:10.1103/physrev.149.564.
  5. Severnyi, A. B. (1959). "On the Appearance of Cosmics Rays in the Pinch Effect in Solar Flares". Soviet Astronomy. 3: 887. Bibcode:1959SvA.....3..887S.
  6. Zueva, N. M.; Solov'ev, L. S.; Morozov, A. I. (1976). "Nonlinear instability of plasma pinches". Journal of Experimental and Theoretical Physics Letters. 23: 256. Bibcode:1976JETPL..23..256Z.
  7. 1 2 Phillips, James (Winter 1983). "Magnetic Fusion". Los Alamos Science. pp. 64–67.
  8. Rai, J.; Singh, A. K.; Saha, S. K (1973). "Magnetic field within the return stroke channel of lightning". Indian Journal of Radio and Space Physics. 2: 240–242. Bibcode:1973IJRSP...2..240R.
  9. Galperin, Iu. I.; Zelenyi, L. M.; Kuznetsova, M. M. (1986). "Pinching of field-aligned currents as a possible mechanism for the formation of raylike auroral forms". Kosmicheskie Issledovaniia. 24: 865–874. Bibcode:1986KosIs..24..865G.
  10. Syrovatskii, S. I. (1981). "Pinch sheets and reconnection in astrophysics". Annual Review of Astronomy and Astrophysics. 19: 163–229. Bibcode:1981ARA&A..19..163S. doi:10.1146/annurev.aa.19.090181.001115.
  11. Airapetyan, V. S.; Vikhrev, V. V.; Ivanov, V. V.; Rozanova, G. A. (1990). "Pinch Mechanism of Energy Release of Stellar Flares". Astrophysics. 32 (3): 230–235. Bibcode:1990Ap.....32..230A. doi:10.1007/bf01005504. S2CID   120883355.
  12. 1 2 Carlqvist, Per (May 1988). "Cosmic electric currents and the generalized Bennett relation". Astrophysics and Space Science. 144 (1–2): 73–84. Bibcode:1988Ap&SS.144...73C. doi:10.1007/BF00793173. S2CID   119719745.
  13. Biskamp, Dieter (1997). Nonlinear Magnetohydrodynamics. Cambridge, England: Cambridge University Press. p. 130. ISBN   0-521-59918-0.
  14. Basu, Dipak K. (8 October 2018). Dictionary of Material Science and High Energy Physics. CRC Press. p. 315. ISBN   978-0-8493-2889-3.
  15. Srivastava, K. M.; Vyas, D. N. (August 1982). "Non-linear analysis of the stability of the screw pinch". Astrophysics and Space Science. 86 (1): 71–89. Bibcode:1982Ap&SS..86...71S. doi:10.1007/BF00651831. S2CID   121575638.
  16. See "MHD Equilibria" in Introduction to Plasma Physics by I.H.Hutchinson (2001)
  17. Srivastava, K. M.; Waelbroeck, F. (1976). "On the stability of the screw pinch in the CGL model". Journal of Plasma Physics. 16 (3): 261. Bibcode:1976JPlPh..16..261S. doi:10.1017/s0022377800020201. S2CID   123689314.
  18. Anderson, O. A.; Furth, H. P.; Stone, J. M.; Wright, R. E. (November 1958). "Inverse Pinch Effect". Physics of Fluids. 1 (6): 489–494. Bibcode:1958PhFl....1..489A. doi:10.1063/1.1724372.
  19. Helander, P.; Akers, R. J.; Valovič, M. (3 November 2005). "The effect of non-inductive current drive on tokamak transport". Plasma Physics and Controlled Fusion. 47 (12B): B151–B163. Bibcode:2005PPCF...47B.151H. doi:10.1088/0741-3335/47/12b/s12. S2CID   121961613.
  20. Nishikawa, K.; Wakatani, M. (2000-01-24). Plasma Physics: Third Edition. Springer Science & Business Media. ISBN   978-3-540-65285-4.
  21. Slutz, Stephen; Vesey, Roger A. (2012). "High-Gain Magnetized Inertial Fusion". Physical Review Letters. 108 (2): 025003. Bibcode:2012PhRvL.108b5003S. doi: 10.1103/PhysRevLett.108.025003 . PMID   22324693.
  22. Hardee, P. E. (1982). "Helical and pinching instability of supersonic expanding jets in extragalactic radio sources". Astrophysical Journal. 257: 509–526. Bibcode:1982ApJ...257..509H. doi: 10.1086/160008 .
  23. Pereira, N. R.; et al. (1988). "X-rays from Z-pinches on relativistic electron-beam generators". Journal of Applied Physics. 64 (3): R1–R27. Bibcode:1988JAP....64....1P. doi:10.1063/1.341808.
  24. Wu, Mei; Chen, Li; Li, Ti-Pei (2005). "Polarization in Gamma-Ray Bursts Produced by Pinch Discharge". Chinese Journal of Astronomy & Astrophysics. 5 (1): 57–64. arXiv: astro-ph/0501334 . Bibcode:2005ChJAA...5...57W. doi:10.1088/1009-9271/5/1/007. S2CID   121943.
  25. Peratt, A.L., "Synchrotron radiation from pinched particle beams", (1998) Plasma Physics: VII Lawpp 97: Proceedings of the 1997 Latin American Workshop on Plasma Physics, Edited by Pablo Martin, Julio Puerta, Pablo Martmn, with reference to Meierovich, B. E., "Electromagnetic collapse. Problems of stability, emission of radiation and evolution of a dense pinch" (1984) Physics Reports, Volume 104, Issue 5, p. 259-346.
  26. Anderson, Oscar A.; et al. (1958). "Neutron Production in Linear Deuterium Pinches". Physical Review. 110 (6): 1375–1387. Bibcode:1958PhRv..110.1375A. doi:10.1103/physrev.110.1375.
  27. Ryutov, D. D.; Derzon, M. S.; Matzen, M. K (2000). "The physics of fast Z pinches". Reviews of Modern Physics. 72 (1): 167–223. Bibcode:2000RvMP...72..167R. doi:10.1103/revmodphys.72.167.
  28. Andre Gsponer, "Physics of high-intensity high-energy particle beam propagation in open air and outer-space plasmas" (2004) https://arxiv.org/abs/physics/0409157
  29. Peratt, Anthony L., "The role of particle beams and electrical currents in the plasma universe" (1988) Laser and Particle Beams (ISSN 0263-0346), vol. 6, Aug. 1988, p. 471-491.
  30. "Z-Pinch Pulsed Plasma Propulsion Technology Development" Final Report Advanced Concepts Office (ED04) Marshall Space Flight Center October 8, 2010, Tara Polsgrove, Et Al.
  31. http://dorland.pp.ph.ic.ac.uk/magpie/?page_id=239 Archived 2014-11-05 at the Wayback Machine "Wire Arrays Z-Pinch" accessed: 3-27-2015
  32. LaPointe, Robert. "High Voltage Devices and Experiments" . Retrieved February 21, 2013.
  33. Tristan. "Electromagnetic Can Crusher" . Retrieved February 21, 2013.
  34. Borros, Sam. "Solid State Can Crusher" . Retrieved February 21, 2013.
  35. "MagnetoPulS". Magnet-Physik, Dr. Steingroever GmbH. 2002. Archived from the original on 2003-05-22. Retrieved February 21, 2013.
  36. "Industrial Application of the Electromagnetic Pulse Technology" (PDF). white paper. PSTproducts GmbH. June 2009. Archived from the original (PDF) on July 15, 2011. Retrieved February 21, 2013.
  37. Examples of electromagnetic pinch can crushers can be found at (a) Bob LaPointe's site on High Voltage Devices and Experiments (b) Tristran's Electromagnetic Can Crusher (including schematic) (c) Sam Borros's Solid State Can Crusher
  38. See also the IEEE History Center, "Evolution of the IEEE Logo" March 1963; see also the comments in "Laboratory Astrophysics"
  39. van Marum M 1790 Proc. 4th Int. Conf. on Dense Z-Pinches (Vancouver 1997) (Am. Inst. Phys. Woodbury, New York, 1997) Frontispiece and p ii
  40. R. S. Pease, "The Electromagnetic Pinch: From Pollock to the Joint European Torus", "Pollock Memorial Lecture for 1984 delivered at the University of Sydney, 28 November, 1984" Archived 2006-05-29 at the Wayback Machine
  41. Northrup, Edwin F. (1907). "Some Newly Observed Manifestations of Forces in the Interior of an Electric Conductor". Physical Review. Series I. 24 (6). American Physical Society (APS): 474–497. Bibcode:1907PhRvI..24..474N. doi:10.1103/physrevseriesi.24.474. ISSN   1536-6065.
  42. Bennett, Willard H. (1934). "Magnetically Self-Focussing Streams". Phys. Rev. 45 (12): 890–897. Bibcode:1934PhRv...45..890B. doi:10.1103/physrev.45.890.
  43. Haines, M G; Sanford, T W L; Smirnov, V P (2005). "Wire-array Z-pinch: a powerful x-ray source for ICF". Plasma Phys. Control. Fusion. 47 (12B): B1–B11. Bibcode:2005PPCF...47B...1H. doi:10.1088/0741-3335/47/12b/s01. S2CID   120320797.
  44. Thompson, G. P.; Blackman; Haines, M. G. (1996). "Historical Perspective: Fifty years of controlled fusion research". Plasma Physics and Controlled Fusion. 38 (5): 643–656. Bibcode:1996PPCF...38..643H. doi:10.1088/0741-3335/38/5/001. S2CID   250763028.
  45. Kruskal, M D; Schwarzschild (1954). "Some Instabilities of a Completely Ionized Plasma". Proc. R. Soc. Lond. A. 223 (1154): 348–360. Bibcode:1954RSPSA.223..348K. doi:10.1098/rspa.1954.0120. S2CID   121125652.
  46. Kurchatov I V (1957) J. Nucl. Energy 4 193
  47. Pease, R S (1957). "Equilibrium Characteristics of a Pinched Gas Discharge Cooled by Bremsstrahlung Radiation". Proc. Phys. Soc. Lond. 70 (1): 11–23. Bibcode:1957PPSB...70...11P. doi:10.1088/0370-1301/70/1/304.
  48. Braginskii S I 1957 Zh. Eksp. Teor. Fiz 33 645
  49. Braginskii S I 1958 Sov. Phys.—JETP 6 494
  50. Haines M G et al. 2005 Phys. Rev. Lett.. submitted; see also EPS Conf. on Plasma Physics 2004 (London, UK) paper 73
  51. Curzon, F. L.; et al. (1960). "Experiments on the Growth Rate of Surface Instabilities in a Linear Pinched Discharge". Proc. R. Soc. Lond. A. 257 (1290): 386–401. Bibcode:1960RSPSA.257..386C. doi:10.1098/rspa.1960.0158. S2CID   96283997.
  52. Bellan, P. Fundamentals of Plasma Physics
  53. A.Yu.Okulov. "Laser singular Theta-pinch", Phys.Lett.A, v.374, 4523-4527, (2010)
  54. Optical phase conjugation and electromagnetic momenta
  55. Ideal Magnetohydrodynamics: Modern perspectives in energy. Jeffrey P. Freidberg. Massachusetts Institute of Technology. Cambridge, Massachusetts. Plenum Press - New York and London - 1987. (Pg. 86, 95)
  56. Trubnikov, Boris A (1992). "A new hypothesis of cosmic ray generation in plasma pinches". IEEE Transactions on Plasma Science. 20 (6): 898–904. Bibcode:1992ITPS...20..898T. doi:10.1109/27.199547.
  57. "The PLASMAK Configuration and Ball Lightning" (PDF Archived 2006-07-15 at the Wayback Machine ) presented at the International Symposium on Ball Lightning; July 1988
  58. Witalis, E. A. "Plasma-physical aspects of charged-particle beams" (1981) Physical Review A - General Physics, 3rd Series, vol. 24, Nov. 1981, p. 2758–2764
  59. Anthony L . Peratt, "Physics of the Plasma Universe", 1992 Springer-Verlag, ISBN   0-387-97575-6
  60. Jeans, J. H. (1902). "The stability of a spherical nebula". Phil. Trans. R. Soc. Lond. A. 199 (312–320): 1–53. Bibcode:1902RSPTA.199....1J. doi: 10.1098/rsta.1902.0012 .
  61. "The Con-Artist Physics of 'Ocean's Eleven'". American Physical Society. March 2002.