Porcupine Hills Formation

Last updated

Porcupine Hills Formation
Stratigraphic range: Paleocene
Type Geological formation
Underlies erosional surface
Overlies Willow Creek Formation
Thicknessup to 1,200 metres (3,940 ft) [1]
Lithology
Primary Shale
Other Sandstone, mudstone, siltstone
Location
Coordinates 49°47′15″N113°52′49″W / 49.78753°N 113.88020°W / 49.78753; -113.88020 (Porcupine Hills Formation)
RegionFlag of Alberta.svg  Alberta
CountryFlag of Canada (Pantone).svg  Canada
Type section
Named for Porcupine Hills (Alberta)
Named by G.M. Dawson, 1883

The Porcupine Hills Formation is a stratigraphic unit of middle to late Paleocene age in the Western Canada Sedimentary Basin. It takes its name from the Porcupine Hills of southwestern Alberta, and was first described in outcrop by George Mercer Dawson in 1883. [2]

Contents

Lithology

The Porcupine Hills Formation is composed primarily of mudstones, siltstones and sandstones. The sediments were derived from the Canadian Cordillera during tectonic uplift and erosion in the late stages of the Laramide Orogeny, and were transported eastward by river systems and deposited in fluvial and floodplain environments. [3]

The mudstones are characterized by well-developed paleosols and caliche nodules, and the sandstones are cross-bedded and cemented with calcite. In contrast to the Paskapoo Formation, an equivalent formation farther to the north, there are no coaly beds. This has given rise to the hypothesis that during the deposition of the Porcupine Hills Formation the climate was semi-arid, while the climate farther north was more humid. [3]

Distribution

The Porcupine Hills Formation is present in southwestern Alberta, from the Waterton River near the Canada–US border in the south to the Bow River near Calgary in the north. [4] The upper limit is the present day erosional surface, so its original thickness can not be determined; however, the maximum recorded thickness is 1,200 metres (3,940 ft) in the Porcupine Hills. [1]

Relationship to other units

The Porcupine Hills Formation is exposed at surface or is overlain by Quaternary sediments. Its base is a thick sandstone that rests disconformably on a paleosol horizon of the underlying Willow Creek Formation. [3]

In the north near the Bow River, the Porcupine Hills Formation grades into the equivalent Paskapoo Formation. It is correlated with upper part of the Ravenscrag Formation of southern Saskatchewan and the Fort Union Formation of Montana and North Dakota, which are not contiguous with it but are of similar age. [5] [6]

Related Research Articles

<span class="mw-page-title-main">Scollard Formation</span> Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin

The Scollard Formation is an Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin in southwestern Alberta. Its deposition spanned the time interval from latest Cretaceous to early Paleocene, and it includes sediments that were deposited before, during, and after the Cretaceous-Paleogene (K-Pg) extinction event. It is significant for its fossil record, and it includes the economically important coal deposits of the Ardley coal zone.

The Wapiti Formation is a geological formation of the Western Canada Sedimentary Basin in northwestern Alberta, and northeastern British Columbia, Canada. Its deposition spanned the time interval from the lower Campanian through to the upper Maastrichtian, between approximately 80 and 68 Ma. It was named by G.M. Dawson in 1881, presumably for exposures along the lower part of the Wapiti River and downstream along the Smoky River in Alberta.

<span class="mw-page-title-main">St. Mary River Formation</span> Geologic formation in western Canada

The St. Mary River Formation is a geologic formation of Late Cretaceous age of the Western Canada Sedimentary Basin in southwestern Alberta and northwesternmost Montana. It was first described from outcrops along the St. Mary River by George Mercer Dawson in 1883, and it takes its name from the river.

The Willow Creek Formation is a stratigraphic unit of Late Cretaceous to Early Paleocene age in the Western Canada Sedimentary Basin of southwestern Alberta. It was first described by George Mercer Dawson in 1883 along the Willow Creek, a tributary of the Oldman River. Williams and Dyer defined the type section in 1930 at the mouth of Willow Creek, east of Fort Macleod.

<span class="mw-page-title-main">Fernie Formation</span>

The Fernie Formation is a stratigraphic unit of Jurassic age. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914.

<span class="mw-page-title-main">Paskapoo Formation</span> Stratigraphic unit in Western Canada

The Paskapoo Formation is a stratigraphic unit of Middle to Late Paleocene age in the Western Canada Sedimentary Basin. The Paskapoo underlies much of southwestern Alberta, and takes the name from the Blindman River. It was first described from outcrops along that river, near its confluence with the Red Deer River north of the city of Red Deer, by Joseph Tyrrell in 1887. It is important for its freshwater aquifers, its coal resources, and its fossil record, as well as having been the source of sandstone for the construction of fire-resistant buildings in Calgary during the early 1900s.

The Mist Mountain Formation is a geologic formation of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin that is present in the southern and central Canadian Rockies. It was named for outcrops along the western spur of Mist Mountain in Alberta by D.W. Gibson in 1979. The Mist Mountain Formation contains economically important coal seams that have been mined in southeastern British Columbia and southwestern Alberta.

<span class="mw-page-title-main">Edmonton Group</span> Stratigraphic unit in central Alberta, Canada

Within the earth science of geology, the Edmonton Group is a Late Cretaceous to early Paleocene stratigraphic unit of the Western Canada Sedimentary Basin in the central Alberta plains. It was first described as the Edmonton Formation by Joseph Burr Tyrrell in 1887 based on outcrops along the North Saskatchewan River in and near the city of Edmonton. E.J.W. Irish later elevated the formation to group status and it was subdivided into four separate formations. In ascending order, they are the Horseshoe Canyon, Whitemud, Battle and Scollard Formations. The Cretaceous-Paleogene boundary occurs within the Scollard Formation, based on dinosaurian and microfloral evidence, as well as the presence of the terminal Cretaceous iridium anomaly.

The Ravenscrag Formation is a stratigraphic unit of early Paleocene age in the Western Canada Sedimentary Basin. It was named for the settlement of Ravenscrag, Saskatchewan, and was first described from outcrops at Ravenscrag Butte near the Frenchman River by N.B. Davis in 1918.

<span class="mw-page-title-main">Morrissey Formation</span>

The Morrissey Formation is a stratigraphic unit of Late Jurassic (Portlandian) age in the Western Canada Sedimentary Basin. It is named for outcrops on Morrissey Ridge, 16 kilometres (10 mi) southeast of Fernie, British Columbia, and is present in southeastern British Columbia and southwestern Alberta.

The Elk Formation is a stratigraphic unit of the Western Canada Sedimentary Basin that is present in southeastern British Columbia and southwestern Alberta. It is probably of Early Cretaceous age, but in some areas its strata could be as old as Late Jurassic. It includes minor thin coal beds and was named for outcrops near the now-abandoned Elk River coal mine east of Fernie, British Columbia.

<span class="mw-page-title-main">Yahatinda Formation</span> Geologic formation in Western Canada

The Yahatinda Formation is a geologic formation of Middle Devonian (Givetian) age in the southwestern part of the Western Canada Sedimentary Basin in the mountains of southwestern Alberta. Its type locality lies the on the eastern face of Wapiti Mountain above Ya-Ha-Tinda Ranch at the eastern edge of Banff National Park. The Yahatinda contains a variety of Devonian fossils.

The Coalspur Formation is an Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin in the foothills of southwestern Alberta. Its deposition spanned the time interval from latest Cretaceous (Maastrichtian) to early Palaeocene, and it includes sediments that were deposited before, during, and after the Cretaceous-Paleogene (K-Pg) extinction event. It includes the economically important coal deposits of the Coalspur Coal Zone, as well as nonmarine plant and animal fossils.

The Blairmore Group, originally named the Blairmore Formation, is a geologic unit of Early Cretaceous age in the Western Canada Sedimentary Basin that is present in southwestern Alberta and southeastern British Columbia. It is subdivided into four formations: Cadomin Formation, Gladstone, Beaver Mines and Ma Butte, all of which are defined by type sections, most of which contain plant fossils. In some areas the Blairmore contains significant reservoirs of natural gas.

The Battle Formation is a geologic formation of Late Cretaceous (Maastrichtian) age in the Western Canada Sedimentary Basin. It is present throughout much of the central Alberta plains, where it is an important stratigraphic marker in the nonmarine Upper Cretaceous sequence. It was formally named by G.M. Furnival in 1942 and given formation status by E.J.W. Irish in 1970.

The Gorman Creek Formation is a geologic formation of Early Cretaceous (Valanginian) age in the Western Canada Sedimentary Basin that consists primarily of nonmarine sediments. It is present in the northern foothills of the Canadian Rockies and the adjacent plains in northeastern British Columbia. Plant fossils and dinosaur tracks have been described from its strata.

The Luscar Group is a geologic unit of Early Cretaceous age in the Western Canada Sedimentary Basin that is present in the foothills of southwestern Alberta. It is subdivided into a series of formations, some of which contain economically significant coal deposits that have been mined near Cadomin and Luscar. Coal mining in those areas began in the early 1900s and continues near Luscar as of 2016.

The Gladstone Formation is a stratigraphic unit of Early Cretaceous (Aptian) age in the Western Canada Sedimentary Basin. It is present in the foothills of southwestern Alberta and is named for outcrops along Gladstone Creek, a tributary of the Castle River south of the Crowsnest Pass.

The Ma Butte Formation is a stratigraphic unit of Early Cretaceous (Albian) age in the Western Canada Sedimentary Basin. It was named for Ma Butte, a mountain north of Coleman, Alberta, by J.R. McLean in 1980. It is present in the foothills of southwestern Alberta and it contains plant fossils.

The geology of Alberta encompasses parts of the Canadian Rockies and thick sedimentary sequences, bearing coal, oil and natural gas, atop complex Precambrian crystalline basement rock.

References

  1. 1 2 Lexicon of Canadian Geologic Units. "Porcupine Hills Formation" . Retrieved 1 January 2010.
  2. Dawson, G.M., 1883. Preliminary report on the geology of the Bow and Belly river region, Northwest Territory, with special reference to the coal deposits. Geological Survey of Canada, Report of Progress for 1880-81-82, Part B.
  3. 1 2 3 Hamblin, A.P. (2004). "Paskapoo-Porcupine Hills Formation in western Alberta: Synthesis of regional geology and resource potential. Geological Survey of Canada, Open File 4679" . Retrieved 1 August 2013.
  4. Prior, G. J., Hathaway, B., Glombick, P.M., Pana, D.I., Banks, C.J., Hay, D.C., Schneider, C.L., Grobe, M., Elgr, R., and Weiss, J.A. (2013). "Bedrock Geology of Alberta. Alberta Geological Survey, Map 600". Archived from the original on 25 September 2013. Retrieved 13 August 2013.{{cite web}}: CS1 maint: multiple names: authors list (link)
  5. Mossop, G.D. and Shetsen, I., (compilers), Canadian Society of Petroleum Geologists (1994). "The Geological Atlas of the Western Canada Sedimentary Basin, Chapter 24: Upper Cretaceous and Tertiary strata of the Western Canada Sedimentary Basin". Archived from the original on 21 July 2013. Retrieved 1 August 2013.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. Alberta Geological Survey, 2013. "Alberta Table of Formations; Alberta Energy Regulator" (PDF). Archived from the original (PDF) on 25 September 2015. Retrieved 20 June 2016.{{cite web}}: CS1 maint: numeric names: authors list (link)