Pratt & Whitney J58

Last updated

J58
Pratt & Whitney J58.jpg
J58 engine on display at the Evergreen Aviation & Space Museum
Type Turbojet
National originUnited States
Manufacturer Pratt & Whitney
First run1958
Major applications Lockheed A-12
Lockheed SR-71

The Pratt & Whitney J58 (company designation JT11D-20) is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed [1] to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". [2] It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed. [3] [4]

Contents

The engine performance that met the mission requirements for the CIA and USAF over many years was later enhanced slightly for NASA experimental work (carrying external payloads on the top of the aircraft), which required more thrust to deal with higher aircraft drag. [5]

Development

Origins

The J58, company designation JT11, had its origins in the larger JT9 (J91) engine. It was a 3/4 scale JT9 with a mass flow of 300 lb/s (140 kg/s), down from 400 lb/s (180 kg/s). [2] The JT11 was proposed to the US Navy under their designation J58. [2] It was also proposed for various Navy and Air Force aircraft, e.g. Convair F-106, North American F-108, Convair B-58C, Vought XF8U-3 Crusader III, and North American A3J Vigilante, but none of these applications followed. [2]

The J58 began development for the US Navy [6] to power the planned [7] Martin P6M jet flying boat. [8] The P6M started out using Allison J71-A-4 engines and then switched to the Pratt & Whitney J75, due to J58 development delays. Upon cancellation of the P6M, it was selected for the Convair Kingfish and for the Lockheed A-12, YF-12A and SR-71. Other sources link its origin to the USAF's requirement for a powerplant for the WS-110A, the future XB-70 Valkyrie. [9]

Re-design for Mach 3.2

J58 on full afterburner, showing shock diamonds J58 AfterburnerT.jpeg
J58 on full afterburner, showing shock diamonds

Analytical calculations of the performance of the original J58 showed 3 problems at Mach 2.5: "exhaust pressure was equal to the inlet pressure, the compressor was deep in surge, and there was no cool air to the afterburner liner that would therefore melt". [10]

The first problem was caused by excessive compressor delivery temperatures, which did not allow enough energy to be added in the engine combustor to provide any thrust from the gas generator. All the thrust-producing pressure in the jet-pipe came from ram, as with a ramjet, and none from the gas generator. Fuel for thrust could only be added in the afterburner, which became the only source of engine thrust. The speed at which the gas generator produced no thrust was raised from about Mach 2.5 to about Mach 3 by patented design changes. Beyond that speed, the gas generator would become a drag item with, at Mach 3.2, a pressure ratio of 0.9. [11] Even minimum afterburner would not balance the drag. The effect was described qualitatively by Lockheed inlet designer David Campbell "..with minimum afterburner the engine would be dragging on the engine mounts at high Mach numbers." [12]

The second problem (the compressor deep in surge) was caused by the compressor trying to operate at too-low a corrected speed in an area of its compressor map known as "off-design". The third problem was caused by the afterburner duct being cooled with too-hot turbine exhaust gas.

U.S. patent 3,344,606 [13] describes the changes to the engine that extended the engine's capability to Mach 3.2. They included diverting 20% of the compressor entry air after the 4th compressor stage directly to the afterburner through six external tubes. This allowed the compressor to work properly with adequate surge margin and increased airflow into the compressor. Some of the increased flow left the compressor after the 4th stage as bypass to the afterburner, and some left the last compressor stage through the previously choked area. [13] The increased airflow gave more thrust. The inlet guide vanes were modified with trailing-edge flaps to reduce blade flutter and prevent blade fatigue failures. The afterburner was cooled by the bleed air that was 400 °F (220 °C) cooler than the turbine exhaust gas. Not all the oxygen in the bleed air was available for combustion, as most of the bleed air was directed into the cooling shroud before entering the afterburner cavity for reheating. [13] The improved afterburner cooling allowed a higher flame temperature, which gave more thrust.

The engine was completely redesigned, except for the compressor and turbine aerodynamic definitions, [2] so that it would be reliable running for prolonged periods at unprecedented temperatures, not only inside the engine but also surrounding the casings where the controls, accessories, electrical wiring and fuel and oil tubes were located.

Starting

Two starting methods were used during the life of the A-12, YF-12 and SR-71 aircraft: an AG330 starter cart with two Buick V8 engines driving a common output shaft, or compressed air driving a small starter adapter. The air-start method superseded the cumbersome "Buicks" when better compressed air supplies became available. [14]

Fuel

Any aircraft flying at three times the speed of sound is in a severe thermal environment, both from frictional heating and stagnation ram rise. The fuel was the only heat sink available to the aircraft and after absorbing 40,000 Btu/min (700 kW), [15] keeping everything cool enough from the crew to the exhaust nozzle area indicator, it was supplied to the fuel nozzles at 600 °F (316 °C). [16] To cope with these high temperatures, a new jet fuel with a low vapor pressure had to be developed. A chemical method for igniting the fuel, triethyl borane (TEB), was developed to match its low volatility. TEB spontaneously ignites in contact with air above −5 °C. The engine and afterburner were lit with TEB and the afterburner also had a catalytic igniter that glowed in the hot turbine exhaust. [17] Each engine carried a nitrogen-pressurized sealed tank with 600 cm3 (21.1 imp fl oz; 20.3 US fl oz) of TEB, sufficient for at least 16 starts, restarts, or afterburner lights; this number was one of the limiting factors of SR-71 endurance, as after each air refueling the afterburners had to be reignited. [18] When the pilot moved the throttle from cut-off to idle position, fuel flowed into the engine, and shortly afterwards an approx. 50 cm3 (1.8 imp fl oz; 1.7 US fl oz) shot of TEB was injected into the combustion chamber, where it spontaneously ignited and lit the fuel with a green flash. In some conditions, however, the TEB flow was obstructed by coking deposits on the injector nozzle, hindering restart attempts. Refilling the TEB tank was a perilous task; the maintenance crew wore silver fire suits. [19] Conversely, the JP-7 fueling was so safe that some aircraft maintenance was permitted during filling. The chemical ignition was chosen instead of a conventional igniter for reliability reasons, and to reduce mechanical complexity. The TEB tank is cooled with fuel flowing around it, and contains a disk that ruptures in case of overpressure, allowing TEB and nitrogen to discharge into the afterburner.

One heat source required two-stage reduction. Before entering the fuel heat-sink system, the Environmental Control System (ECS) air leaving the engine compressor at 1,230 °F (666 °C) was so hot that ram air at 760 °F (404 °C) [20] had to be used first. Fuel flowing from the tanks to the engines was used to cool the air conditioning systems, aircraft hydraulic fluid, engine oil, accessory drive system oil, the TEB tank and afterburner nozzle actuator control lines. [21]

Materials

The development of the J58 involved some of the most challenging metallurgical development problems experienced by Pratt & Whitney Aircraft so far, with components operating at unprecedented temperatures and levels of stress and durability. [22] [23] New manufacturing techniques as well as new alloys improved the mechanical properties, and surface coatings had to be developed to protect components.

Premature cracking of turbine vanes and blades made from conventionally cast (i.e. equiaxed) Mar-M200, the strongest cast nickel-base alloy, was avoided by the development of directionally solidified parts cast in the same material. Directionally solidified Mar-M200 became the strongest cast turbine material to date and was introduced in production engines. Single-crystal turbine blades cast in Mar-M200, giving further improvement of high temperature resistance, would also be developed through testing in J58 engines. Waspaloy was the most widely used alloy in the engine, from critical high-energy rotating compressor discs to components made from sheet. Although used for turbine discs in other engines, it did not have the required properties for J58 turbine discs. Astroloy, the strongest known nickel-base superalloy in the Western world at that time, was used instead. Waspaloy was also used initially for the diffuser case, the part that joins the compressor to the combustor and that contains the highest pressure in the engine. Diffuser case weld cracking led to the introduction of Inconel 718 for this part. The afterburner liner was sprayed with ceramic thermal barrier coating that, together with the cooling air from the compressor, allowed continuous use of the afterburner [24] with flame temperatures up to 3,200 °F (1,760 °C). [11]

Performance enhancement for NASA

NASA was loaned 2 SR-71 aircraft for research work. One was modified to flight-test a Linear Aerospike rocket engine and was fitted with thrust-enhanced J58 engines. [5] Engine thrust was increased by 5% to offset increased aircraft drag. The increased thrust came from a throttle push, or exhaust gas temperature uptrim, of 75 °F (42 °C). The increase was limited by the allowable reduction in life of the second-stage turbine blades (the life-limiting component) from 400 to 50 hours. The same thrust-enhancement studies used for this work also looked at an additional 5% thrust from additional afterburner fuel made possible with oxidizer injection (nitrous oxide). The nitrous oxide rate would have been limited by thermal choking of the nozzle. [25]

Legacy

As of 2021, the J58 is the only known aircraft engine designed to operate continuously at maximum afterburning at high Mach number cruise. [12] [26] J58 experience was used extensively in the JTF17 engine proposal for a Mach 2.7 SST, due to significant flight time at Mach 2.7 and above. It was also used for subsequent engines developed by Pratt & Whitney, both commercial and military. The next afterburning engine, the TF30 as installed in the F-111, used an airframe-mounted secondary nozzle with free-floating flaps similar to that used on the SR-71. [27]

J58 emissions were measured as part of the NASA Stratospheric Wake Experiment, which looked at the environmental impact of using afterburning jet engines for supersonic transports. An engine was tested in an altitude chamber at a maximum condition of full afterburning at Mach 3.0 and 19.8 km altitude. [28]

Design

Contemporary compressor solutions for Mach 3 flight

Alternative solutions to combat the adverse effects of high inlet temperature on the aerodynamic performance of the compressor were rejected by the Pratt & Whitney patentee, Robert Abernethy. [13] One of those solutions was used in a contemporary installation. The GE YJ93/XB-70 used a variable-stator compressor to avoid front-stage stall and rear-stage choking. [29]

Another possible solution, pre-compressor cooling, was used on the MiG-25's R-15 engines. Water/methanol was injected from a spray mast in front of the compressor to lower the intake temperature for short durations at maximum speed. [30] Pre-compressor cooling was also proposed for a Mach 3 reconnaissance Phantom [31] and the Mach 3+ F-106 RASCAL project. [32]

Propulsion system design

Operation of the air inlet and nozzle showing air flow through the nacelle SR71 J58 Engine Airflow Patterns.svg
Operation of the air inlet and nozzle showing air flow through the nacelle

The propulsion system consisted of the intake, engine, nacelle or secondary airflow and ejector nozzle (propelling nozzle). [12] The propulsive thrust distribution between these components changed with flight speed: at Mach 2.2 inlet 13% – engine 73% – ejector 14%; at Mach 3.0+ inlet 54% – engine 17.6% – ejector 28.4%. [12]

Intake

The intake had to supply air to the engine with acceptable pressure loss and distortion. It had to do this in all flight conditions. [33]

Nacelle airflow and ejector nozzle

The ejector, or secondary, nozzle performed the reverse function of the inlet accelerating the turbine exhaust from about Mach 1.0, as it left the primary nozzle, back up to Mach 3. [34] Mach 3 exhaust velocity is higher than Mach 3 flight velocity due to the much-higher temperature in the exhaust. The nacelle airflow from the intake controlled the expansion of the hot engine exhaust in the ejector nozzle. [35] This air flowed around the engine and served also to cool the hot external parts of the engine and to purge any combustible mixtures in the event of a fuel or oil leak in the nacelle.

Variants

JT11-1
Proposed version with 26,000 lbs. thrust in afterburner; Mach 3 dash capability. [2]
JT11-5A
Proposed version with 32,800 lbs. thrust in afterburner; Mach 3+ capability. [2]
JT11-7
Proposed version with 32,800 lbs. thrust with afterburner; Mach 4 capability. [2]
JT11D-20
(J58-P-4) Production version for the SR-71. [2]
J58-P-2
proposed for a US Navy fighter, canceled mid-1959. [2]
J58-P-4

Applications

Specifications (JT11D-20)

Front view of a J58 as displayed at the Imperial War Museum Duxford, Cambridgeshire, UK, alongside a Lockheed SR-71A Blackbird Pratt & Whitney J58 Turbojet.jpg
Front view of a J58 as displayed at the Imperial War Museum Duxford, Cambridgeshire, UK, alongside a Lockheed SR-71A Blackbird

Data from Aircraft engines of the World 1966/67, [36] The Engines of Pratt & Whitney: A Technical History, [2] Military Turbojet/Turbofan Specifications, [37] [38]

General characteristics

Components

Performance

See also

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of the preceding generation engine technology of the turbojet, and a reference to the additional fan stage added. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Afterburner</span> Turbojet engine component

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">Pratt & Whitney F119</span> American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

<span class="mw-page-title-main">JP-7</span> Special jet fuel for supersonic aircraft and beyond

Turbine Fuel Low Volatility JP-7, commonly known as JP-7 is a specialized type of jet fuel developed in 1955 for the United States Air Force (USAF) for use in its supersonic military aircraft, including the SR-71 Blackbird and the Boeing X-51 Waverider.

A compressor map is a chart which shows the performance of a turbomachinery compressor. This type of compressor is used in gas turbine engines, for supercharging reciprocating engines and for industrial processes, where it is known as a dynamic compressor. A map is created from compressor rig test results or predicted by a special computer program. Alternatively the map of a similar compressor can be suitably scaled. This article is an overview of compressor maps and their different applications and also has detailed explanations of maps for a fan and intermediate and high-pressure compressors from a three-shaft aero-engine as specific examples.

A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970s from the rising cost of fuel.

<span class="mw-page-title-main">General Electric YF120</span> American fighter variable-cycle turbofan engine

The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.

<span class="mw-page-title-main">Pratt & Whitney PW1120</span> Turbojet engine

The Pratt & Whitney PW1120 turbojet is a derivative of the F100 turbofan. It was installed as a modification to a single F-4E fighter jet, and powered the canceled IAI Lavi.

<span class="mw-page-title-main">Air turborocket</span>

The air turborocket is a form of combined-cycle jet engine. The basic layout includes a gas generator, which produces high pressure gas, that drives a turbine/compressor assembly which compresses atmospheric air into a combustion chamber. This mixture is then combusted before leaving the device through a nozzle and creating thrust.

<span class="mw-page-title-main">General Electric YJ93</span> Turbojet engine

The General Electric YJ93 turbojet engine was designed as the powerplant for both the North American XB-70 Valkyrie bomber and the North American XF-108 Rapier interceptor. The YJ93 was a single-shaft axial-flow turbojet with a variable-stator compressor and a fully variable convergent/divergent exhaust nozzle. The maximum sea-level thrust was 28,800 lbf (128 kN).

<span class="mw-page-title-main">Rolls-Royce/Snecma Olympus 593</span> 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat, which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma, derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine, making BSEL the Bristol Engine Division of Rolls-Royce.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

<span class="mw-page-title-main">Volvo RM8</span>

The Volvo RM8 is a low-bypass afterburning turbofan jet engine developed for the Saab 37 Viggen fighter. An augmented bypass engine was required to give both better fuel consumption at cruise speeds and higher thrust boosting for its short take-off requirement than would be possible using a turbojet. In 1962, the civil Pratt & Whitney JT8D engine, as used for airliners such as the Boeing 727, was chosen as the only engine available which could be modified to meet the Viggen requirements. The RM8 was a licensed-built version of the JT8D, but extensively modified for supersonic speeds, with a Swedish-designed afterburner, and was produced by Svenska Flygmotor.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

The familiar study of jet aircraft treats jet thrust with a "black box" description which only looks at what goes into the jet engine, air and fuel, and what comes out, exhaust gas and an unbalanced force. This force, called thrust, is the sum of the momentum difference between entry and exit and any unbalanced pressure force between entry and exit, as explained in "Thrust calculation".

References

  1. "How Bleed Air Works". National Museum of the Air Force. December 15, 2016.
  2. 1 2 3 4 5 6 7 8 9 10 11 Connors, Jack; Allen, Ned (2010). The Engines of Pratt & Whitney: A Technical History. Reston, Virginia: American Institute of Aeronautics and Astronautics. pp. 321–333. ISBN   9781-60086-711-8.
  3. Advances on Propulsion Technology for High-Speed Aircraft (Technical report). RTO-AVT-VKI Lecture series. Vol. I. Belgium: von Karman Institute For Fluid Dynamics. March 12, 2007. p. 5.
  4. Smith, Clarence L. "Kelly"; Johnson, Maggie (1989). Kelly: More Than My Share Of It All. US: Smithsonian Institution Press. p. 145. ISBN   0-87474-491-1.
  5. 1 2 Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G. (September 1998). "Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)" (PDF). NASA. Retrieved May 2, 2020.
  6. "Factsheets: Pratt & Whitney J58 TurboJet". National Museum of the Air Force. Archived from the original on April 3, 2010.
  7. "A Look at the Pratt & Whitney J-58JT11D-20". Atomic Toasters. 2012. Archived from the original on November 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  8. "Martin P6M Seamaster". The Aviation History On-Line Museum. April 12, 1997. Retrieved May 2, 2020.
  9. Goodall, James; Miller, Jay (2002). Lockheed's SR-71 'Blackbird' Family A-12, F-12, M-21, D-21, SR-71. Hinckley, England: AeroFax-Midland Publishing. ISBN   1-85780-138-5.
  10. Abernethy, Robert (March 26, 2004). More Never Told Tales of Pratt & Whitney. Presented to the Roadrunners and the J58 Reunion.
  11. 1 2 Law, Peter (2013). SR-71 Propulsion System P&W J58 Engine (JT11D-20) . Retrieved January 18, 2020.
  12. 1 2 3 4 Campbell, David H (November 1974). "F-12 Series Aircraft Propulsion System Performance and Development". Journal of Aircraft. II (11).
  13. 1 2 3 4 US 3344606,Robert B. Abernethy,"Recover Bleed Air Turbojet",published October 3, 1967
  14. Graham, Richard H. (2008). Flying the SR-71 Blackbird. Zenith Press. p. 89. ISBN   978-0-7603-3239-9.
  15. Rich, Ben R. (July 1974). "F-12 Series Aircraft Aerodynamic and Thermodynamic Design in Retrospect". Journal of Aircraft. II (7): 401. doi:10.2514/3.60356.
  16. Johnson, Clarence L. (July–August 1970). "Some Development Aspects of the YF-12A Interceptor Aircraft". Journal of Aircraft. 7 (4): 355. doi:10.2514/3.44177.
  17. Graham, Richard H. (1998). SR-71 Revealed The Inside Story. Zenith Press. p. 49. ISBN   978-0-7603-0122-7.
  18. "Archived copy". Archived from the original on July 15, 2003. Retrieved July 15, 2003.{{cite web}}: CS1 maint: archived copy as title (link)
  19. Shafer, Mary (March 20, 1996). "SR71" . Retrieved January 18, 2020 via yarchive.
  20. Law, Peter (2005). SR-71 Environmental Control System Development Contribution and Credits (PDF). Retrieved January 12, 2020.
  21. SR-71 Flight Manual 1989, p. 1-58.
  22. Engine Proposal for Phase III of the Supersonic Transport Development Program. vol III Technical/Engine. Report F. Manufacturing Techniques and Materials (Technical report). Pratt & Whitney. September 1966. Retrieved January 18, 2020 via Internet Archive.
  23. Engine Proposal for Phase III of the Supersonic Transport Development Program. vol III. Technical/Engine. Report B. Engine Design (Technical report). Pratt & Whitney. September 1966. Retrieved May 3, 2020 via Internet Archive.
  24. Miller, Robert A. (March 2009). History of Thermal barrier Coatings for Gas Turbine Engines emphasising NASA's role from 1942 to 1990 (Technical report). NASA. 20090018047. Retrieved May 3, 2020.
  25. Connors, Timothy R. (June 1997). "Predicted Performance of a Thrust Enhanced SR-71 Aircraft with an External Payload" (PDF). NASA. Retrieved May 2, 2020.
  26. "SR-71 Blackbird - Cold War icon". Imperial War Museums . November 3, 2021. Retrieved January 23, 2023 via YouTube.
  27. Whitford, Ray (1987). Design For Air Combat. Jane's Publishing Company Limited. p. 207. ISBN   0-7106-0426-2.
  28. Holdeman, James P (1976). Measurement of Exhaust Emissions from Two J-58 Engines at Simulated Supersonic Cruise Flight Conditions (PDF) (Technical report). US: NASA. Retrieved December 20, 2021.
  29. Hesse, Walter J.; Mumford, Nicholas V.S. (1964). Jet Propulsion for Aerospace Applications (2nd ed.). Pitman Publishing Corporation. p. 377. ASIN   B000VWK6CE.
  30. Air International Magazine, November 1979, p.250
  31. http://aviationtrivia.blogspot.com.au/2012/07/the-mach-3-phantom.html "Tails Through Time" J P Santiago Wednesday, July 18, 2012 "The Mach 3 Phantom"
  32. "F-106 Delta Dart - RASCAL Project". Archived from the original on January 16, 2014. Retrieved January 14, 2014.
  33. US 3477455,David H. Campbell,"Supersonic Inlet for Jet Engines",published November 11, 1969
  34. Law, Peter. The Engine (PDF). Archived from the original (PDF) on October 2, 2012. Retrieved January 18, 2020.
  35. "AIAA 2003–0185. Aerodynamically Controlled Expansion Nozzle for STOVL Aircraft" (PDF). uta.edu. January 2003. Retrieved July 17, 2023.
  36. Wilkinson, Paul H. (1966). Aircraft engines of the World 1966/67 (21st ed.). London: Sir Isaac Pitman & Sons Ltd. p. 103.
  37. "Military Turbojet/Turbofan Specifications". www.jet-engine.net. Retrieved January 2, 2018.
  38. Graham, Richard H. (1996). SR-71 revealed : the inside story . Osceola, WI, USA: Motorbooks International Publishers. p.  46. ISBN   978-0-7603-0122-7.
  39. SR-71 Flight Manual 1989, p. 1-7.
  40. SR-71 Flight Manual 1989, p. 1-4.
  41. Timothy R. Conners (June 1997). "Predicted Performance of a Thrust Enhanced SR-71 Aircraft with an External Payload" (PDF). NASA. Retrieved July 17, 2023.

Bibliography