In computer science, a radix tree (also radix trie or compact prefix tree or compressed trie) is a data structure that represents a space-optimized trie (prefix tree) in which each node that is the only child is merged with its parent. The result is that the number of children of every internal node is at most the radix r of the radix tree, where r = 2x for some integer x ≥ 1. Unlike regular trees, edges can be labeled with sequences of elements as well as single elements. This makes radix trees much more efficient for small sets (especially if the strings are long) and for sets of strings that share long prefixes.
Unlike regular trees (where whole keys are compared en masse from their beginning up to the point of inequality), the key at each node is compared chunk-of-bits by chunk-of-bits, where the quantity of bits in that chunk at that node is the radix r of the radix trie. When r is 2, the radix trie is binary (i.e., compare that node's 1-bit portion of the key), which minimizes sparseness at the expense of maximizing trie depth—i.e., maximizing up to conflation of nondiverging bit-strings in the key. When r ≥ 4 is a power of 2, then the radix trie is an r-ary trie, which lessens the depth of the radix trie at the expense of potential sparseness.
As an optimization, edge labels can be stored in constant size by using two pointers to a string (for the first and last elements). [1]
Note that although the examples in this article show strings as sequences of characters, the type of the string elements can be chosen arbitrarily; for example, as a bit or byte of the string representation when using multibyte character encodings or Unicode.
Radix trees are useful for constructing associative arrays with keys that can be expressed as strings. They find particular application in the area of IP routing, [2] [3] [4] where the ability to contain large ranges of values with a few exceptions is particularly suited to the hierarchical organization of IP addresses. [5] They are also used for inverted indexes of text documents in information retrieval.
Radix trees support insertion, deletion, and searching operations. Insertion adds a new string to the trie while trying to minimize the amount of data stored. Deletion removes a string from the trie. Searching operations include (but are not necessarily limited to) exact lookup, find predecessor, find successor, and find all strings with a prefix. All of these operations are O(k) where k is the maximum length of all strings in the set, where length is measured in the quantity of bits equal to the radix of the radix trie.
The lookup operation determines if a string exists in a trie. Most operations modify this approach in some way to handle their specific tasks. For instance, the node where a string terminates may be of importance. This operation is similar to tries except that some edges consume multiple elements.
The following pseudo code assumes that these methods and members exist.
Edge
Node
function lookup(string x) { // Begin at the root with no elements foundNode traverseNode := root; int elementsFound := 0; // Traverse until a leaf is found or it is not possible to continuewhile (traverseNode != null && !traverseNode.isLeaf() && elementsFound < x.length) { // Get the next edge to explore based on the elements not yet found in xEdge nextEdge := select edge from traverseNode.edges where edge.label is a prefix of x.suffix(elementsFound) // x.suffix(elementsFound) returns the last (x.length - elementsFound) elements of x// Was an edge found?if (nextEdge != null) { // Set the next node to explore traverseNode := nextEdge.targetNode; // Increment elements found based on the label stored at the edge elementsFound += nextEdge.label.length; } else { // Terminate loop traverseNode := null; } } // A match is found if we arrive at a leaf node and have used up exactly x.length elementsreturn (traverseNode != null && traverseNode.isLeaf() && elementsFound == x.length); }
To insert a string, we search the tree until we can make no further progress. At this point we either add a new outgoing edge labeled with all remaining elements in the input string, or if there is already an outgoing edge sharing a prefix with the remaining input string, we split it into two edges (the first labeled with the common prefix) and proceed. This splitting step ensures that no node has more children than there are possible string elements.
Several cases of insertion are shown below, though more may exist. Note that r simply represents the root. It is assumed that edges can be labelled with empty strings to terminate strings where necessary and that the root has no incoming edge. (The lookup algorithm described above will not work when using empty-string edges.)
To delete a string x from a tree, we first locate the leaf representing x. Then, assuming x exists, we remove the corresponding leaf node. If the parent of our leaf node has only one other child, then that child's incoming label is appended to the parent's incoming label and the child is removed.
The datastructure was invented in 1968 by Donald R. Morrison, [6] with whom it is primarily associated, and by Gernot Gwehenberger. [7]
Donald Knuth, pages 498-500 in Volume III of The Art of Computer Programming, calls these "Patricia's trees", presumably after the acronym in the title of Morrison's paper: "PATRICIA - Practical Algorithm to Retrieve Information Coded in Alphanumeric". Today, Patricia trees are seen as radix trees with radix equals 2, which means that each bit of the key is compared individually and each node is a two-way (i.e., left versus right) branch.
(In the following comparisons, it is assumed that the keys are of length k and the data structure contains n members.)
Unlike balanced trees, radix trees permit lookup, insertion, and deletion in O(k) time rather than O(log n). This does not seem like an advantage, since normally k ≥ log n, but in a balanced tree every comparison is a string comparison requiring O(k) worst-case time, many of which are slow in practice due to long common prefixes (in the case where comparisons begin at the start of the string). In a trie, all comparisons require constant time, but it takes m comparisons to look up a string of length m. Radix trees can perform these operations with fewer comparisons, and require many fewer nodes.
Radix trees also share the disadvantages of tries, however: as they can only be applied to strings of elements or elements with an efficiently reversible mapping to strings, they lack the full generality of balanced search trees, which apply to any data type with a total ordering. A reversible mapping to strings can be used to produce the required total ordering for balanced search trees, but not the other way around. This can also be problematic if a data type only provides a comparison operation, but not a (de)serialization operation.
Hash tables are commonly said to have expected O(1) insertion and deletion times, but this is only true when considering computation of the hash of the key to be a constant-time operation. When hashing the key is taken into account, hash tables have expected O(k) insertion and deletion times, but may take longer in the worst case depending on how collisions are handled. Radix trees have worst-case O(k) insertion and deletion. The successor/predecessor operations of radix trees are also not implemented by hash tables.
A common extension of radix trees uses two colors of nodes, 'black' and 'white'. To check if a given string is stored in the tree, the search starts from the top and follows the edges of the input string until no further progress can be made. If the search string is consumed and the final node is a black node, the search has failed; if it is white, the search has succeeded. This enables us to add a large range of strings with a common prefix to the tree, using white nodes, then remove a small set of "exceptions" in a space-efficient manner by inserting them using black nodes.
The HAT-trie is a cache-conscious data structure based on radix trees that offers efficient string storage and retrieval, and ordered iterations. Performance, with respect to both time and space, is comparable to the cache-conscious hashtable. [8] [9]
A PATRICIA trie is a special variant of the radix 2 (binary) trie, in which rather than explicitly store every bit of every key, the nodes store only the position of the first bit which differentiates two sub-trees. During traversal the algorithm examines the indexed bit of the search key and chooses the left or right sub-tree as appropriate. Notable features of the PATRICIA trie include that the trie only requires one node to be inserted for every unique key stored, making PATRICIA much more compact than a standard binary trie. Also, since the actual keys are no longer explicitly stored it is necessary to perform one full key comparison on the indexed record in order to confirm a match. In this respect PATRICIA bears a certain resemblance to indexing using a hash table. [6]
The adaptive radix tree is a radix tree variant that integrates adaptive node sizes to the radix tree. One major drawback of the usual radix trees is the use of space, because it uses a constant node size in every level. The major difference between the radix tree and the adaptive radix tree is its variable size for each node based on the number of child elements, which grows while adding new entries. Hence, the adaptive radix tree leads to a better use of space without reducing its speed. [10] [11] [12]
A common practice is to relax the criteria of disallowing parents with only one child in situations where the parent represents a valid key in the data set. This variant of radix tree achieves a higher space efficiency than the one which only allows internal nodes with at least two children. [13]
In computer science, an AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.
In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is linear with respect to the height of the tree.
In computer science, a data structure is a data organization, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data.
In computing, a hash table, also known as a hash map or a hash set, is a data structure that implements an associative array, also called a dictionary, which is an abstract data type that maps keys to values. A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored.
In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered. For this reason, radix sort has also been called bucket sort and digital sort.
In computer science, a trie, also called digital tree or prefix tree, is a type of k-ary search tree, a tree data structure used for locating specific keys from within a set. These keys are most often strings, with links between nodes defined not by the entire key, but by individual characters. In order to access a key, the trie is traversed depth-first, following the links between nodes, which represent each character in the key.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations.
In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height small in the face of arbitrary item insertions and deletions. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing".
Kademlia is a distributed hash table for decentralized peer-to-peer computer networks designed by Petar Maymounkov and David Mazières in 2002. It specifies the structure of the network and the exchange of information through node lookups. Kademlia nodes communicate among themselves using UDP. A virtual or overlay network is formed by the participant nodes. Each node is identified by a number or node ID. The node ID serves not only as identification, but the Kademlia algorithm uses the node ID to locate values.
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjan's 1986 article.
In computer science, a suffix tree is a compressed trie containing all the suffixes of the given text as their keys and positions in the text as their values. Suffix trees allow particularly fast implementations of many important string operations.
In computer science, a fusion tree is a type of tree data structure that implements an associative array on w-bit integers on a finite universe, where each of the input integers has size less than 2w and is non-negative. When operating on a collection of n key–value pairs, it uses O(n) space and performs searches in O(logwn) time, which is asymptotically faster than a traditional self-balancing binary search tree, and also better than the van Emde Boas tree for large values of w. It achieves this speed by using certain constant-time operations that can be done on a machine word. Fusion trees were invented in 1990 by Michael Fredman and Dan Willard.
In computer science, a ternary search tree is a type of trie where nodes are arranged in a manner similar to a binary search tree, but with up to three children rather than the binary tree's limit of two. Like other prefix trees, a ternary search tree can be used as an associative map structure with the ability for incremental string search. However, ternary search trees are more space efficient compared to standard prefix trees, at the cost of speed. Common applications for ternary search trees include spell-checking and auto-completion.
Burstsort and its variants are cache-efficient algorithms for sorting strings. They are variants of the traditional radix sort but faster for large data sets of common strings, first published in 2003, with some optimizing versions published in later years.
In computer science, an x-fast trie is a data structure for storing integers from a bounded domain. It supports exact and predecessor or successor queries in time O(log log M), using O(n log M) space, where n is the number of stored values and M is the maximum value in the domain. The structure was proposed by Dan Willard in 1982, along with the more complicated y-fast trie, as a way to improve the space usage of van Emde Boas trees, while retaining the O(log log M) query time.
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. The ability to perform integer arithmetic on the keys allows integer sorting algorithms to be faster than comparison sorting algorithms in many cases, depending on the details of which operations are allowed in the model of computing and how large the integers to be sorted are.
A concurrent hash-trie or Ctrie is a concurrent thread-safe lock-free implementation of a hash array mapped trie. It is used to implement the concurrent map abstraction. It has particularly scalable concurrent insert and remove operations and is memory-efficient. It is the first known concurrent data-structure that supports O(1), atomic, lock-free snapshots.
The HAT-trie is a type of radix trie that uses array nodes to collect individual key–value pairs under radix nodes and hash buckets into an associative array. Unlike a simple hash table, HAT-tries store key–value in an ordered collection. The original inventors are Nikolas Askitis and Ranjan Sinha. Askitis & Zobel showed that building and accessing the HAT-trie key/value collection is considerably faster than other sorted access methods and is comparable to the array hash which is an unsorted collection. This is due to the cache-friendly nature of the data structure which attempts to group access to data in time and space into the 64 byte cache line size of the modern CPU.
Routines to build and maintain radix trees for routing lookups.
{{cite book}}
: |journal=
ignored (help){{cite book}}
: CS1 maint: date and year (link)