SERPINB10

Last updated
SERPINB10
Identifiers
Aliases SERPINB10 , PI-10, PI10, serpin family B member 10
External IDs OMIM: 602058 MGI: 2138648 HomoloGene: 68430 GeneCards: SERPINB10
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005024

NM_001160307
NM_198028

RefSeq (protein)

NP_005015

NP_001153779
NP_932145

Location (UCSC) Chr 18: 63.9 – 63.94 Mb Chr 1: 107.46 – 107.48 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serpin peptidase inhibitor, clade B (ovalbumin), member 10 is a protein that in humans is encoded by the SERPINB10 gene. [5]

Contents

Function

The superfamily of high molecular weight serine proteinase inhibitors (serpins) regulate a diverse set of intracellular and extracellular processes such as complement activation, fibrinolysis, coagulation, cellular differentiation, tumor suppression, apoptosis, and cell migration. Serpins are characterized by a well-conserved tertiary structure that consists of 3 beta sheets and 8 or 9 alpha helices. [6] A critical portion of the molecule, the reactive center loop connects beta sheets A and C. Protease inhibitor-10 (PI10; SERPINB10) is a member of the ov-serpin subfamily, which, relative to the archetypal serpin PI1 (MIM 107400), is characterized by a high degree of homology to chicken ovalbumin, lack of N- and C-terminal extensions, absence of a signal peptide, and a serine rather than an asparagine residue at the penultimate position. [7]

Related Research Articles

<span class="mw-page-title-main">Alpha-1 antitrypsin</span> Mammalian protein found in Homo sapiens

Alpha-1 antitrypsin or α1-antitrypsin is a protein belonging to the serpin superfamily. It is encoded in humans by the SERPINA1 gene. A protease inhibitor, it is also known as alpha1–proteinase inhibitor (A1PI) or alpha1-antiproteinase (A1AP) because it inhibits various proteases. In older biomedical literature it was sometimes called serum trypsin inhibitor, because its capability as a trypsin inhibitor was a salient feature of its early study. As a type of enzyme inhibitor, it protects tissues from enzymes of inflammatory cells, especially neutrophil elastase, and has a reference range in blood of 0.9–2.3 g/L, but the concentration can rise manyfold upon acute inflammation.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">Serpin</span> Superfamily of proteins with similar structures and diverse functions

Serpins are a superfamily of proteins with similar structures that were first identified for their protease inhibition activity and are found in all kingdoms of life. The acronym serpin was originally coined because the first serpins to be identified act on chymotrypsin-like serine proteases. They are notable for their unusual mechanism of action, in which they irreversibly inhibit their target protease by undergoing a large conformational change to disrupt the target's active site. This contrasts with the more common competitive mechanism for protease inhibitors that bind to and block access to the protease active site.

<span class="mw-page-title-main">Alpha 2-antiplasmin</span> Protein-coding gene in the species Homo sapiens

Alpha 2-antiplasmin is a serine protease inhibitor (serpin) responsible for inactivating plasmin. Plasmin is an important enzyme that participates in fibrinolysis and degradation of various other proteins. This protein is encoded by the SERPINF2 gene.

<span class="mw-page-title-main">Ovalbumin</span> Main protein found in egg white

Ovalbumin is the main protein found in egg white, making up approximately 55% of the total protein. Ovalbumin displays sequence and three-dimensional homology to the serpin superfamily, but unlike most serpins it is not a serine protease inhibitor. The function of ovalbumin is unknown, although it is presumed to be a storage protein.

<span class="mw-page-title-main">Heparin cofactor II</span> Protein-coding gene in the species Homo sapiens

Heparin cofactor II (HCII), a protein encoded by the SERPIND1 gene, is a coagulation factor that inhibits IIa, and is a cofactor for heparin and dermatan sulfate.

<span class="mw-page-title-main">Plasminogen activator inhibitor-2</span> Protein-coding gene in the species Homo sapiens

Plasminogen activator inhibitor-2, a serine protease inhibitor of the serpin superfamily, is a coagulation factor that inactivates tissue plasminogen activator and urokinase. It is present in most cells, especially monocytes/macrophages. PAI-2 exists in two forms, a 60-kDa extracellular glycosylated form and a 43-kDa intracellular form.

<span class="mw-page-title-main">Alpha 1-antichymotrypsin</span> Protein-coding gene in the species Homo sapiens

Alpha 1-antichymotrypsin is an alpha globulin glycoprotein that is a member of the serpin superfamily. In humans, it is encoded by the SERPINA3 gene.

<span class="mw-page-title-main">Maspin</span> Protein-coding gene in the species Homo sapiens

Maspin is a protein that in humans is encoded by the SERPINB5 gene. This protein belongs to the serpin superfamily. SERPINB5 was originally reported to function as a tumor suppressor gene in epithelial cells, suppressing the ability of cancer cells to invade and metastasize to other tissues. Furthermore, and consistent with an important biological function, Maspin knockout mice were reported to be non-viable, dying in early embryogenesis. However, a subsequent study using viral transduction as a method of gene transfer was not able to reproduce the original findings and found no role for maspin in tumour biology. Furthermore, the latter study demonstrated that maspin knockout mice are viable and display no obvious phenotype. These data are consistent with the observation that maspin is not expressed in early embryogenesis. The precise molecular function of maspin is thus currently unknown.

<span class="mw-page-title-main">SERPINB3</span> Protein-coding gene in the species Homo sapiens

Serpin B3 is a protein that in humans is encoded by the SERPINB3 gene.

<span class="mw-page-title-main">SERPINB9</span> Protein-coding gene in the species Homo sapiens

Serpin B9 is a protein that in humans is encoded by the SERPINB9 gene. PI9 belongs to the large superfamily of serine proteinase inhibitors (serpins), which bind to and inactivate serine proteinases. These interactions are involved in many cellular processes, including coagulation, fibrinolysis, complement fixation, matrix remodeling, and apoptosis .[supplied by OMIM]

<span class="mw-page-title-main">SERPINB4</span> Protein-coding gene in the species Homo sapiens

Serpin B4 is a protein that in humans is encoded by the SERPINB4 gene.

<span class="mw-page-title-main">SERPINB6</span> Protein-coding gene in the species Homo sapiens

Serpin B6 is a protein that in humans is encoded by the SERPINB6 gene.

<span class="mw-page-title-main">SERPINB1</span> Protein-coding gene in the species Homo sapiens

Leukocyte elastase inhibitor (LEI) also known as serpin B1 is a protein that in humans is encoded by the SERPINB1 gene. It is a member of the clade B serpins or ov-serpins founded by ovalbumin.

<span class="mw-page-title-main">SERPINB13</span> Gene of the species Homo sapiens

Serpin B13 is a protein that in humans is encoded by the SERPINB13 gene.

<span class="mw-page-title-main">SERPINB7</span> Protein-coding gene in the species Homo sapiens

Serpin B7 is a protein that in humans is encoded by the SERPINB7 gene.

<span class="mw-page-title-main">SERPINB8</span> Protein-coding gene in the species Homo sapiens

Serpin B8 is a protein that in humans is encoded by the SERPINB8 gene.

Myeloid and erythroid nuclear termination stage-specific protein (MENT) is a member of the serpin family of protease inhibitors, and participates in DNA and chromatin condensation. Alongside its ability to condense chromatin, MENT is also an effective inhibitor of the proteases cathepsin K, cathepsin L, and cathepsin V, all of which are cysteine proteases. As such, although MENT is structurally classified as a member of the serpin family, it is functionally termed a "cross-class inhibitor," as it is a cysteine rather than a serine protease inhibitor.

<span class="mw-page-title-main">TPSG1</span> Protein-coding gene in the species Homo sapiens

Tryptase gamma, also known as serine protease 31 or transmembrane tryptase, is an enzyme that in humans is encoded by the TPSG1 gene.

<span class="mw-page-title-main">Kazal domain</span>

The Kazal domain is an evolutionary conserved protein domain usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000242550 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000092572 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Serpin peptidase inhibitor, clade B (ovalbumin), member 10".
  6. Huber R, Carrell RW (November 1989). "Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins". Biochemistry. 28 (23): 8951–66. doi:10.1021/bi00449a001. PMID   2690952.
    • Bartuski AJ, Kamachi Y, Schick C, Overhauser J, Silverman GA (August 1997). "Cytoplasmic antiproteinase 2 (PI8) and bomapin (PI10) map to the serpin cluster at 18q21.3". Genomics. 43 (3): 321–8. doi:10.1006/geno.1997.4827. PMID   9268635.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.