Sulfoacetaldehyde reductase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.1.1.313 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Sulfoacetaldehyde reductase (EC 1.1.1.313, ISFD) is an enzyme with systematic name isethionate:NADP+ oxidoreductase. [1] This enzyme catalyses the following chemical reaction
This enzyme catalyses the reaction in the reverse direction.
Nitrate reductase (NADPH) (EC 1.7.1.3, assimilatory nitrate reductase, assimilatory reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase, NADPH-nitrate reductase, assimilatory NADPH-nitrate reductase, triphosphopyridine nucleotide-nitrate reductase, NADPH:nitrate reductase, nitrate reductase (NADPH2), NADPH2:nitrate oxidoreductase) is an enzyme with systematic name nitrite:NADP+ oxidoreductase. This enzyme catalises the following chemical reaction
In enzymology, a tropinone reductase I (EC 1.1.1.206) is an enzyme that catalyzes the chemical reaction
In enzymology, a tropinone reductase II (EC 1.1.1.236) is an enzyme that catalyzes the chemical reaction
In enzymology, a mycothiol-dependent formaldehyde dehydrogenase (EC 1.1.1.306) is an enzyme that catalyzes the chemical reaction
In molecular biology, the HMG-CoA reductase family is a family of enzymes which participate in the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids.
NADP-retinol dehydrogenase (EC 1.1.1.300, all-trans retinal reductase, all-trans-retinol dehydrogenase, NADP(H)-dependent retinol dehydrogenase/reductase, RDH11, RDH12, RDH13, RDH14, retinol dehydrogenase 12, retinol dehydrogenase 14, retinol dehydrogenase (NADP+), RalR1, PSDR1) is an enzyme with systematic name retinol:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Perakine reductase (EC 1.1.1.317) is an enzyme with systematic name raucaffrinoline:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Benzil reductase ((S)-benzoin forming) (EC 1.1.1.320, YueD) is an enzyme with systematic name (S)-benzoin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Benzil reductase ((R)-benzoin forming) (EC 1.1.1.321) is an enzyme with systematic name (R)-benzoin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming) (EC 1.1.1.325) is an enzyme with systematic name L-threo-7,8-dihydrobiopterin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Methylecgonone reductase (EC 1.1.1.334, MecgoR (gene name)) is an enzyme with systematic name ecgonine methyl ester:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Malonyl CoA reductase (malonate semialdehyde-forming) (EC 1.2.1.75, NADP-dependent malonyl CoA reductase, malonyl CoA reductase (NADP)) is an enzyme with systematic name malonate semialdehyde:NADP+ oxidoreductase (malonate semialdehyde-forming). This enzyme catalyse the following chemical reaction
Sulfoacetaldehyde dehydrogenase (acylating) (EC 1.2.1.81, SauS) is an enzyme with systematic name 2-sulfoacetaldehyde:NADP+ oxidoreductase (CoA-acetylating). This enzyme catalyses the following chemical reaction
5β-Reductase, or Δ4-3-oxosteroid 5β-reductase (EC 1.3.1.3, 3-oxo-Δ4-steroid 5β-reductase, androstenedione 5β-reductase, cholestenone 5β-reductase, cortisone 5β-reductase, cortisone Δ4-5β-reductase, steroid 5β-reductase, testosterone 5β-reductase, Δ4-3-ketosteroid 5β-reductase, Δ4-5β-reductase, Δ4-hydrogenase, 4,5β-dihydrocortisone:NADP+ Δ4-oxidoreductase, 3-oxo-5β-steroid:NADP+ Δ4-oxidoreductase) is an enzyme with systematic name 5β-cholestan-3-one:NADP+ 4,5-oxidoreductase. This enzyme catalyses the following chemical reaction
(-)-Isopiperitenone reductase (EC 1.3.1.82) is an enzyme with systematic name (+)-cis-isopulegone:NADP+ oxidoreductase. It catalyses the following chemical reaction:
Acrylyl-CoA reductase (NADPH) (EC 1.3.1.84) is an enzyme with systematic name propanoyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Crotonyl-CoA carboxylase/reductase (EC 1.3.1.85, CCR, crotonyl-CoA reductase (carboxylating)) is an enzyme with systematic name (2S)-ethylmalonyl-CoA:NADP+ oxidoreductase (decarboxylating). This enzyme catalyses the following chemical reaction
Crotonyl-CoA reductase (EC 1.3.1.86, butyryl-CoA dehydrogenase, butyryl dehydrogenase, unsaturated acyl-CoA reductase, ethylene reductase, enoyl-coenzyme A reductase, unsaturated acyl coenzyme A reductase, butyryl coenzyme A dehydrogenase, short-chain acyl CoA dehydrogenase, short-chain acyl-coenzyme A dehydrogenase, 3-hydroxyacyl CoA reductase, butanoyl-CoA:(acceptor) 2,3-oxidoreductase, CCR) is an enzyme with systematic name butanoyl-CoA:NADP+ 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction
Polyprenol reductase (EC 1.3.1.94, SRD5A3 (gene), DFG10 (gene)) is an enzyme with systematic name ditrans,polycis-dolichol:NADP+ 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction
Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.