Supersonic airfoils

Last updated

A supersonic airfoil is a cross-section geometry designed to generate lift efficiently at supersonic speeds. The need for such a design arises when an aircraft is required to operate consistently in the supersonic flight regime.

Contents

Supersonic airfoils generally have a thin section formed of either angled planes or opposed arcs (called "double wedge airfoils" and "biconvex airfoils" respectively), with very sharp leading and trailing edges. The sharp edges prevent the formation of a detached bow shock in front of the airfoil as it moves through the air. [1] This shape is in contrast to subsonic airfoils, which often have rounded leading edges to reduce flow separation over a wide range of angle of attack. [2] A rounded edge would behave as a blunt body in supersonic flight and thus would form a bow shock, which greatly increases wave drag. The airfoils' thickness, camber, and angle of attack are varied to achieve a design that will cause a slight deviation in the direction of the surrounding airflow. [3]

Drag

At supersonic conditions, aircraft drag is originated due to:

Therefore, the Drag coefficient on a supersonic airfoil is described by the following expression:

CD=CD,friction+CD,thickness+CD,lift

Experimental data allow us to reduce this expression to:

CD=CD,O+KCL2 Where CDO is the sum of C(D,friction) and C D,thickness, and k for supersonic flow is a function of the Mach number. [3] The skin-friction component is derived from the presence of a viscous boundary layer which is infinitely close to the surface of the aircraft body. At the boundary wall, the normal component of velocity is zero; therefore an infinitesimal area exists where there is no slip. The zero-lift wave drag component can be obtained based on the supersonic area rule which tells us that the wave-drag of an aircraft in a steady supersonic flow is identical to the average of a series of equivalent bodies of revolution. The bodies of revolution are defined by the cuts through the aircraft made by the tangent to the fore Mach cone from a distant point of the aircraft at an azimuthal angle. This average is over all azimuthal angles. [4] The drag due-to lift component is calculated using lift-analysis programs. The wing design and the lift-analysis programs are separate lifting-surfaces methods that solve the direct or inverse problem of design and lift analysis.

Supersonic wing design

Years of research and experience with the unusual conditions of supersonic flow have led to some interesting conclusions about airfoil design. Considering a rectangular wing, the pressure at a point P with coordinates (x,y) on the wing is defined only by the pressure disturbances originated at points within the upstream Mach cone emanating from point P. [3] As result, the wing tips modify the flow within their own rearward Mach cones. The remaining area of the wing does not suffer any modification by the tips and can be analyzed with two-dimensional theory. For an arbitrary planform the supersonic leading and trailing are those portions of the wing edge where the components of the freestream velocity normal to the edge are supersonic. Similarly the subsonic leading and trailing are those portions of the wing edge where the components of the free stream velocity normal to the edge are subsonic.

Delta wings have supersonic leading and trailing edges; in contrast arrow wings have a subsonic leading edge and a supersonic trailing edge.

When designing a supersonic airfoil two factors that must be considered are shock and expansion waves. [5] Whether a shock or expansion wave is generated at different locations along an airfoil depends on the local flow speed and direction along with the geometry of the airfoil.

Summary

Aerodynamic efficiency for supersonic aircraft increases with thin section airfoils with sharp leading and trailing edges. Swept wings where the leading edge is subsonic have the advantage of reducing the wave drag component at supersonic flight speeds; however experiments show that the theoretical benefits are not always attained due to separation of the flow over the surface of the wing; however this can be corrected with design factors. Double-Wedge and Bi-convex airfoils are the most common designs used in supersonic flights. Wave drag is the simplest and most important component of the drag in supersonic flow flight regions. For the optimized aircraft nearly 60% of its drag is skin friction drag, little over 20% is induced drag, and slightly under 20% is wave drag, hence less than 30% of the drag is due to lift.

See also

Related Research Articles

<span class="mw-page-title-main">Aerodynamics</span> Branch of dynamics concerned with studying the motion of air

Aerodynamics is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.

<span class="mw-page-title-main">Mach number</span> Ratio of speed of an object moving through fluid and local speed of sound

The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Austrian physicist and philosopher Ernst Mach.

<span class="mw-page-title-main">Wing</span>

A wing is a type of fin that produces lift, while moving through air or some other fluid. As such, wings have streamlined cross-sections that are subject to aerodynamic forces and act as an airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Area rule</span> Aerodynamic concept

The Whitcomb area rule, named after NACA engineer Richard Whitcomb and also called the transonic area rule, is a design procedure used to reduce an aircraft's drag at transonic speeds which occur between about Mach 0.75 and 1.2. For supersonic speeds a different procedure called the supersonic area rule, developed by NACA aerodynamicist Robert Jones, is used.

<span class="mw-page-title-main">Delta wing</span> Triangle shaped aircraft wing configuration

A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).

<span class="mw-page-title-main">Shock wave</span> Propagating disturbance

In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium, but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

<span class="mw-page-title-main">Swept wing</span> Plane wing that angles backwards or forwards

A swept wing is a wing angled either backward or occasionally forward from its root rather than perpendicular to the fuselage.

<span class="mw-page-title-main">Transonic</span> Flight condition in which airflow speeds are concurrently above and below the speed of sound

Transonic flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound, typically between Mach 0.8 and 1.2.

In aeronautics, wave drag is a component of the aerodynamic drag on aircraft wings and fuselage, propeller blade tips and projectiles moving at transonic and supersonic speeds, due to the presence of shock waves. Wave drag is independent of viscous effects, and tends to present itself as a sudden and dramatic increase in drag as the vehicle increases speed to the critical Mach number. It is the sudden and dramatic rise of wave drag that leads to the concept of a sound barrier.

<span class="mw-page-title-main">Aspect ratio (aeronautics)</span> Ratio of an aircrafts wing span to its mean chord

In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio.

<span class="mw-page-title-main">Airfoil</span> Cross-sectional shape of a wing, blade of a propeller, rotor, or turbine, or sail

An airfoil or aerofoil is a streamlined body that is capable of generating significantly more lift than drag. Wings, sails and propeller blades are examples of airfoils. Foils of similar function designed with water as the working fluid are called hydrofoils.

Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as .

<span class="mw-page-title-main">Parasitic drag</span> Aerodynamic resistance against the motion of an object

Parasitic drag, also known as profile drag, is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is a combination of form drag and skin friction drag. It affects all objects regardless of whether they are capable of generating lift.

<span class="mw-page-title-main">Inlet cone</span> Supersonic aircraft component

Inlet cones are a component of some supersonic aircraft and missiles. They are primarily used on ramjets, such as the D-21 Tagboard and Lockheed X-7. Some turbojet aircraft including the Su-7, MiG-21, English Electric Lightning, and SR-71 also use an inlet cone.

<span class="mw-page-title-main">Supercritical airfoil</span> Airfoil designed primarily to delay the onset of wave drag in the transonic speed range

A supercritical aerofoil is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.

<span class="mw-page-title-main">Mach tuck</span> Aerodynamic effect

Mach tuck is an aerodynamic effect whereby the nose of an aircraft tends to pitch downward as the airflow around the wing reaches supersonic speeds. This diving tendency is also known as tuck under. The aircraft will first experience this effect at significantly below Mach 1.

In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.

<span class="mw-page-title-main">Supersonic aircraft</span> Aircraft that travels faster than the speed of sound

A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound. Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes, but only two supersonic aircraft, the Tupolev Tu-144 and the Concorde, ever entered service for civil use as airliners. Fighter jets are the most common example of supersonic aircraft.

<span class="mw-page-title-main">Subsonic aircraft</span> Aircraft with a maximum speed less than the speed of sound

A subsonic aircraft is an aircraft with a maximum speed less than the speed of sound. The term technically describes an aircraft that flies below its critical Mach number, typically around Mach 0.8. All current civil aircraft, including airliners, helicopters, future passenger drones, personal air vehicles and airships, as well as many military types, are subsonic.

<span class="mw-page-title-main">History of aerodynamics</span>

Aerodynamics is a branch of dynamics concerned with the study of the motion of air. It is a sub-field of fluid and gas dynamics, and the term "aerodynamics" is often used when referring to fluid dynamics

References

  1. Courant & Friedrichs. Supersonic Flow and Shock Waves. Pages 357:366. Vol I.New York: Inter science Publishers, inc, 1948
  2. Zucker, Robert & Biblarz, Oscar. Fundamentals of Gas Dynamics, pages 226:229. Second Edition. ISBN   0-471-05967-6 John Wiley & Sons, Inc.
  3. 1 2 3 Bertin, John & Smith, Michael. Aerodynamics for Engineers. Third Edition. Prentice Hall. ISBN   0-13-576356-8. Prentice Hall.
  4. Woodhull, John. "Supersonic Aerodynamics: Lift and Drag". University of Colorado. Paper presented at the RTO AVT course on Fluid Dynamics Research on Supersonic Aircraft
  5. Anderson, John D. Jr. (21 March 2016). Fundamentals of aerodynamics (Sixth ed.). New York, NY. ISBN   978-1-259-12991-9. OCLC   927104254.{{cite book}}: CS1 maint: location missing publisher (link)