This article needs additional citations for verification .(March 2007) |
There are a broad range of metrics that denote the relative capabilities of various vehicles. Most of them apply to all vehicles while others are type-specific.
Measurement | American unit | Imperial unit | Metric unit | Affects | General preference | Notes |
---|---|---|---|---|---|---|
0 to 100 km/h (0 to 60 mph) | seconds | seconds | seconds | acceleration | lower is better | |
0 to 100 to 0 mph | seconds | seconds | seconds | acceleration and braking | lower is better | formerly common in British publications |
Autonomy | miles | miles | kilometers | comfort, safety, economics, range | higher is better | Autonomous means self-governing. [1] Many historical projects related to vehicle automation have been automated (made automatic) subject to a heavy reliance on artificial aids in their environment, such as magnetic strips. Autonomous control implies satisfactory performance under significant uncertainties in the environment, and the ability to compensate for system failures without external intervention. [1] |
Braking distance | feet | feet | meters | safety | shorter is better | |
Brake specific fuel consumption | lb/(hp·h) | lb/(hp·h) | g/(kW·h) | economics, range | lower is better | |
traveled Distance | miles | miles | kilometers | economy | higher rating is better for vehicle longevity; lower elapsed is better for vehicle resale | |
Drag coefficient | (ratio) | (ratio) | (ratio) | economics, top speed, range | lower is better for moving into/through a fluid(air/water), higher is better for stopping/redirecting with a fluid | |
Friction or Friction coefficient | lbf or (ratio) | lbf or (ratio) | N or (ratio) | acceleration, braking distance, traction, fuel consumption, tyre wear | lower is better on kinetic parts(drivetrain), higher is better on static parts[chassis binds/bolts/clamps/composites/nails/screws/welds, control surfaces(brake pad-to-disc and wheel-to-ground patchs)] | improved by lubricated drivetrain, dry and clean road surface/adhesion railway, reducing road slipperiness/skid (automobile) |
Frontal cross-section area | sq ft | sq ft | m2 | economics, top speed, range, cargo capacity | lower is better | if area is too small, vehicle becomes difficult to use |
Fuel economy | mpg (US) | mpg (imperial) | l/100 km and km/L | economics, range | greater is better (mpg and km/L), lower is better (L/100 km) | must be specified on new vehicles for sale in the US and UK |
Maximum g-force(s) | g or ft/s2 | g or ft/s2 | g or m/s2 | acceleration, braking (safety) | higher is usually better | measures cornering, braking or forward acceleration |
Ground pressure | psi | psi | pascals (sometimes bar) | traction | lower is better in soft ground, reduces bogging; higher with loose surface | has greater impact on off-road vehicles |
Lift to drag ratio | (ratio) | (ratio) | (ratio) | economics, range | higher is better for airfoil/hydrofoil; lower is better for stopping/redirecting | improved by narrow, long wings |
Noise/Vibration | dB | dB | dB | comfort, stress, health, awareness (safety), Insurance [2] | lower is better | Noise from traffic, is considered by the World Health Organization to be one of the worst environmental stressors for humans, second only to air pollution. [3] Elevated workplace or environmental noise can cause hearing impairment, tinnitus, hypertension, ischemic heart disease, annoyance, and sleep disturbance. [4] [5] Changes in the immune system and birth defects have been also attributed to noise exposure. [6] Stress from time spent around elevated noise levels has been linked with increased workplace accident rates and aggression and other anti-social behaviors. [7] The most significant sources are vehicles, aircraft, prolonged exposure to loud music, and industrial noise. [8] There are approximately 10,000 deaths per year as a result of noise in the European Union. [9] [10] A loss in situational awareness has led to many transportation disasters, including the 2015 Philadelphia train derailment. [11] |
Power | hp | hp | kW | acceleration | higher is better | Refers to maximum power (high torque and speed). The rate at which torque is applied. Also the rate at which work is done. Power = Torque × RPM / 5252. Automobile manufacturers publish power measured at the crankshaft (bhp or brake horsepower). However, it is the power a car can produce at the wheels (wheel horsepower or whp) that matters when it comes to acceleration performance. Wheel horsepower equals brake horsepower minus drivetrain losses, which can be anywhere from about 10% to 25%. [12] |
Power-to-weight ratio | hp/lb | hp/lb | W/kg | acceleration | higher is better | |
Propulsive efficiency | % | % | % | economics, range | higher is better | For rockets and aircraft, percent of the energy contained in a vehicle's propellant converted into useful energy |
Rate of climb | feet/min | feet/min | meters/min | combat effectiveness, economics | higher is better | Applies to fighter aircraft who need to intercept or evade other fighters. In civilian aircraft this denotes how quickly they can reach optimal cruising altitude. |
Roll center | inches | inches | mm | handling | Too many variables to state a general preference. | |
Rolling resistance or Rolling resistance coefficient | lbf or (ratio) | lbf or (ratio) | N or (ratio) | economics, top speed, range, cargo capacity | lower is better | improved by narrow, high pressure tires with narrow, large radius, steel/titanium alloy wheels on steel/concrete. Best available examples are Railroad steel wheels on steel rails. |
Second moment | psi (lb·sq ft) | psi (lb·sq ft) | kg·m2 | handling | lower permits quicker turn-in for cars, higher is more stable in straight line. | The moment of inertia about a vertical axis of a vehicle |
Size | feet | feet | meters | handling, safety | lower is better for parking on narrow parking slots, higher is better for lateral Traffic collision | |
Shift time | mSec | ms | ms | acceleration | lower is better | for vehicles equipped with automatic transmissions |
Specific fuel consumption (thrust) | lb/(lbf·h) | lb/(lbf·h) | kg/(kgf·h) or g/(kN·s) | economics, range | lower is better (for any given speed) | in airbreathing jet engines it is improved by using more inert air for propulsion (i.e. lower exhaust velocity), in rockets, higher exhaust velocity |
Specific fuel consumption (shaft engine) | lb/(hp·h) | lb/(hp·h) | kg/(kW·h) | economics, range | lower is better | for shaft engines less fuel use for a given output power means higher efficiency |
specific impulse | seconds | seconds | seconds or kN·s/kg | economics, delta-v/range | higher is typically better | in airbreathing jet engines it is improved by using more inert air for propulsion (i.e. lower exhaust velocity), in rockets, higher exhaust velocity |
Top speed | mph | mph | km/h | Maximum rate of straight line travel | higher is better | Electronically limited in some cars for safety (mostly due to concerns of tire failure at high speed) A speed greater than the legal maximum/recommended speed limit can be considered as useless/unsafe. |
Torque | lbf·ft or lb·ft | lbf·ft or lb·ft | N·m | acceleration | higher is better | Refers to the overall maximum torque an engine can produce, or the maximum torque an engine can produce at a given RPM. 300 lbf·ft would be like applying 300 pounds of force to the end of 1 foot long wrench, or twisting a 2-inch diameter shaft with 3600 pounds of force! |
Turning radius | feet | feet | meters | handling | lower is better | |
Weight, mass or Dry weight | lb | lb, long tons, cwt | kg | acceleration, braking distance, traction, fuel consumption, road and tyre wear | lower is better for road and vehicle performance and taxation; larger is usually better for large goods vehicles carrying loads | |
Weight distribution | % | % | % | handling, acceleration, traction | close to 50:50 (%Front:%Rear) is commonly considered better | |
Gross axle weight rating | lb/axle | lb/axle | kg/axle | durability, economics | lower is better for road and vehicle performance and taxation; larger is usually better for large goods vehicles carrying loads | Ultimately limited by the hardness of the road surface and legal limits intended to limit damage to it |
Noise is unwanted sound considered unpleasant, loud, or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound.
Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to acquire spoken language, and in adults it can create difficulties with social interaction and at work. Hearing loss can be temporary or permanent. Hearing loss related to age usually affects both ears and is due to cochlear hair cell loss. In some people, particularly older people, hearing loss can result in loneliness.
Noise pollution, or sound pollution, is the propagation of noise or sound with ranging impacts on the activity of human or animal life, most of which are harmful to a degree. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems. Poor urban planning may give rise to noise disintegration or pollution, side-by-side industrial and residential buildings can result in noise pollution in the residential areas. Some of the main sources of noise in residential areas include loud music, transportation, lawn care maintenance, construction, electrical generators, wind turbines, explosions and people.
Tinnitus is a variety of sound that is heard when no corresponding external sound is present. Nearly everyone experiences faint "normal tinnitus" in a completely quiet room; but it is of concern only if it is bothersome, interferes with normal hearing, or is associated with other problems. The word tinnitus comes from the Latin tinnire, "to ring". In some people, it interferes with concentration, and can be associated with anxiety and depression.
Environmental noise is an accumulation of noise pollution that occurs outside. This noise can be caused by transport, industrial, and recreational activities.
Aircraft noise pollution refers to noise produced by aircraft in flight that has been associated with several negative stress-mediated health effects, from sleep disorders to cardiovascular ones. Governments have enacted extensive controls that apply to aircraft designers, manufacturers, and operators, resulting in improved procedures and cuts in pollution.
Environmental health is the branch of public health concerned with all aspects of the natural and built environment affecting human health. In order to effectively control factors that may affect health, the requirements that must be met in order to create a healthy environment must be determined. The major sub-disciplines of environmental health are environmental science, toxicology, environmental epidemiology, and environmental and occupational medicine.
Ototoxicity is the property of being toxic to the ear (oto-), specifically the cochlea or auditory nerve and sometimes the vestibular system, for example, as a side effect of a drug. The effects of ototoxicity can be reversible and temporary, or irreversible and permanent. It has been recognized since the 19th century. There are many well-known ototoxic drugs used in clinical situations, and they are prescribed, despite the risk of hearing disorders, for very serious health conditions. Ototoxic drugs include antibiotics, loop diuretics, and platinum-based chemotherapy agents. A number of nonsteroidal anti-inflammatory drugs (NSAIDS) have also been shown to be ototoxic. This can result in sensorineural hearing loss, dysequilibrium, or both. Some environmental and occupational chemicals have also been shown to affect the auditory system and interact with noise.
Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.
In acoustics, noise measurement can be for the purpose of measuring environmental noise or measuring noise in the workplace. Applications include monitoring of construction sites, aircraft noise, road traffic noise, entertainment venues and neighborhood noise. One of the definitions of noise covers all "unwanted sounds". When sound levels reach a high enough intensity, the sound, whether it is wanted or unwanted, may be damaging to hearing. Environmental noise monitoring is the measurement of noise in an outdoor environment caused by transport, industry and recreational activities. The laws and limits governing environmental noise monitoring differ from country to country.
Noise health effects are the physical and psychological health consequences of regular exposure to consistent elevated sound levels. Noise from traffic, in particular, is considered by the World Health Organization to be one of the worst environmental stressors for humans, second only to air pollution. Elevated workplace or environmental noise can cause hearing impairment, tinnitus, hypertension, ischemic heart disease, annoyance, and sleep disturbance. Changes in the immune system and birth defects have been also attributed to noise exposure.
Noise-induced hearing loss (NIHL) is a hearing impairment resulting from exposure to loud sound. People may have a loss of perception of a narrow range of frequencies or impaired perception of sound including sensitivity to sound or ringing in the ears. When exposure to hazards such as noise occur at work and is associated with hearing loss, it is referred to as occupational hearing loss.
Disease burden is the impact of a health problem as measured by financial cost, mortality, morbidity, or other indicators. It is often quantified in terms of quality-adjusted life years (QALYs) or disability-adjusted life years (DALYs). Both of these metrics quantify the number of years lost due to disability (YLDs), sometimes also known as years lost due to disease or years lived with disability/disease. One DALY can be thought of as one year of healthy life lost, and the overall disease burden can be thought of as a measure of the gap between current health status and the ideal health status. According to an article published in The Lancet in June 2015, low back pain and major depressive disorder were among the top ten causes of YLDs and were the cause of more health loss than diabetes, chronic obstructive pulmonary disease, and asthma combined. The study based on data from 188 countries, considered to be the largest and most detailed analysis to quantify levels, patterns, and trends in ill health and disability, concluded that "the proportion of disability-adjusted life years due to YLDs increased globally from 21.1% in 1990 to 31.2% in 2013." The environmental burden of disease is defined as the number of DALYs that can be attributed to environmental factors. Similarly, the work-related burden of disease is defined as the number of deaths and DALYs that can be attributed to occupational risk factors to human health. These measures allow for comparison of disease burdens, and have also been used to forecast the possible impacts of health interventions. By 2014, DALYs per head were "40% higher in low-income and middle-income regions."
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases, particulates, and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and crops, and may damage the natural environment or built environment. Air pollution can be caused by both human activities and natural phenomena.
Active mobility, soft mobility, active travel, active transport or active transportation is the transport of people or goods, through non-motorized means, based around human physical activity. The best-known forms of active mobility are walking and cycling, though other modes include running, rowing, skateboarding, kick scooters and roller skates. Due to its prevalence, cycling is sometimes considered separately from the other forms of active mobility.
The environmental effects of transport are significant because transport is a major user of energy, and burns most of the world's petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide. Within the transport sector, road transport is the largest contributor to global warming.
Road ecology is the study of the ecological effects of roads and highways. These effects may include local effects, such as on noise, water pollution, habitat destruction/disturbance and local air quality; and the wider environmental effects of transport such as habitat fragmentation, ecosystem degradation, and climate change from vehicle emissions.
Occupational hearing loss (OHL) is hearing loss that occurs as a result of occupational hazards, such as excessive noise and ototoxic chemicals. Noise is a common workplace hazard, and recognized as the risk factor for noise-induced hearing loss and tinnitus but it is not the only risk factor that can result in a work-related hearing loss. Also, noise-induced hearing loss can result from exposures that are not restricted to the occupational setting.
In aviation, a source of stress that comes from the environment is known as an environmental stressor. Stress is defined as a situation, variable, or circumstance that interrupts the normal functioning of an individual and, most of the time, causes a threat. It can be related not only to mental health, but also to physical health.
Occupational cardiovascular diseases (CVD) are diseases of the heart or blood vessels caused by working conditions, making them a form of occupational illness. These diseases include coronary heart disease, stroke, cardiomyopathy, arrythmia, and heart valve or heart chamber problems. Cardiovascular disease is the leading cause of death in the United States and worldwide. In the United States, cardiovascular diseases account for one out of four deaths. The 6th International Conference on Work Environment and Cardiovascular Diseases found that within the working age population about 10-20% of cardiovascular disease deaths can be attributed to work. Ten workplace stressors and risk factors were estimated to be associated with 120,000 U.S. deaths each year and account for 5-8% of health care costs.