Webb's First Deep Field

Last updated

Webb's First Deep Field Webb's First Deep Field.jpg
Webb's First Deep Field

Webb's First Deep Field is the first operational image taken by the James Webb Space Telescope (JWST). The deep-field photograph, which covers a tiny area of sky visible from the Southern Hemisphere, is centered on SMACS 0723, a galaxy cluster in the constellation of Volans. Thousands of galaxies are visible in the image, some as old as 13 billion years. [1] It is the highest-resolution image of the early universe ever taken. Captured by the telescope's Near-Infrared Camera (NIRCam), the image was revealed to the public by NASA on 11 July 2022.

Contents

Background

The James Webb Space Telescope is a space telescope operated by NASA and designed primarily to conduct infrared astronomy. Launched in December 2021, the spacecraft has been in a halo orbit around the second Sun–Earth Lagrange point (L2), about 1.5 million kilometers (900,000 mi) from Earth, since January 2022. At L2, the gravitational pull of the Sun combines with the gravitational pull of the Earth to produce an orbital period that matches Earth's, and the Earth and Sun remain co-aligned (as seen from that point) as the Earth and the spacecraft orbit the Sun together. [2]

Webb's First Deep Field was taken by the telescope's Near-Infrared Camera (NIRCam) and is a composite produced from images at different wavelengths, totalling 12.5 hours of exposure time. [3] [4]

SMACS 0723 is a galaxy cluster visible from Earth's Southern Hemisphere, [5] and has often been examined by Hubble and other telescopes in search of the deep past. [2]

Scientific results

The image shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago, [4] covering an area of sky with an angular size approximately equal to a grain of sand held at arm's length. [3] Many of the objects in the image have undergone notable redshift due to the expansion of space over the extreme distance traveled by the light radiating from them. [6] The redshifts of nearly 200 of these objects have been measured to date, [7] with the highest redshift measured at 8.498. [8]

The combined mass of the galaxy cluster acts as a gravitational lens, magnifying and distorting the images of much more distant galaxies behind it. Webb's NIRCam brought the distant galaxies into sharp focus, revealing tiny, faint structures that had never been seen before, including star clusters and diffuse features. [3]

Diffraction spikes in the photo

The Webb telescope's mirror is composed of 18 individual mirrors, each having a hexagonal rim, rather than the round rim typically used in telescopes. JWST-HST-primary-mirrors.svg
The Webb telescope's mirror is composed of 18 individual mirrors, each having a hexagonal rim, rather than the round rim typically used in telescopes.
The six diffraction spikes from the rim along with the two horizontal diffraction spikes from the struts, for a total of eight diffraction spikes. The colors of the spikes correspond to the colors of the rim edges and color of struts. JWST diffraction spikes.svg
The six diffraction spikes from the rim along with the two horizontal diffraction spikes from the struts, for a total of eight diffraction spikes. The colors of the spikes correspond to the colors of the rim edges and color of struts.

The six bright and two fainter spikes around the point sources of light in the photo are an artifact created by the physical limitations of the telescope. The six bright spikes are a result of diffraction from the mirror's edges. The mirror is composed of 18 individual units, each having the shape of a regular hexagon. The hexagonal rim of the units that make up the telescope's large mirror give rise to the six spikes. [9] Telescopes with circular mirrors/lenses don't have such spikes (in lieu of spikes, diffraction from circular rims creates a pattern of concentric rings called Airy discs).

The two additional spikes are a result of diffraction from the struts holding the telescope's secondary mirror in front of the main mirror. As shown in the figure on the right, diffraction from the three struts creates six spikes, but four of these are designed to co-align with the spikes created from the diffraction caused by the rim. This leaves the two faint horizontal spikes visible in the photo. [10]

Significance

Deepest image of the Universe

On 11 July 2022, JWST delivered the deepest sharp infrared image of the universe to date. [11] Webb's First Deep Field is the first full false-color image from the JWST, [12] and the highest-resolution infrared view of the universe yet captured. [11] The image reveals thousands of galaxies in a tiny sliver of the universe, with Webb's sharp near-infrared view bringing out faint structures in extremely distant galaxies, offering the most detailed view of the early universe to date. Thousands of galaxies, which include the faintest objects ever observed in the infrared, have appeared in Webb's view for the first time. [13] [3]

It was first revealed to the public during an event on 11 July 2022 by U.S. President Joe Biden. [2]

Comparison with the Hubble Space Telescope

The following images are a comparison with the image taken by the Hubble Space Telescope and the image taken by Webb of the same galaxy cluster.

NASA-HubbleSpaceTelescope-DeepField-2017.jpg
Webb's First Deep Field (adjusted).jpg
Left: image taken by the Hubble Space Telescope in 2017
Right: same image taken by the James Webb Space Telescope in 2022 [20]

See also

Related Research Articles

<span class="mw-page-title-main">Hubble Space Telescope</span> NASA/ESA space telescope launched in 1990

The Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories. The Space Telescope Science Institute (STScI) selects Hubble's targets and processes the resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft.

<span class="mw-page-title-main">Galaxy cluster</span> Structure made up of a gravitationally-bound aggregation of hundreds of galaxies

A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after some superclusters (of which only one, the Shapley Supercluster, is known to be bound). They were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM). The ICM consists of heated gas between the galaxies and has a peak temperature between 2–15 keV that is dependent on the total mass of the cluster. Galaxy clusters should not be confused with galactic clusters (also known as open clusters), which are star clusters within galaxies, or with globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as galaxy groups rather than clusters of galaxies. The galaxy groups and clusters can themselves cluster together to form superclusters.

<span class="mw-page-title-main">First light (astronomy)</span> Term in astronomy for the first time a telescope is used to look at the Universe

In astronomy, first light is the first use of a telescope to take an astronomical image after it has been constructed. This is often not the first viewing using the telescope; optical tests will probably have been performed to adjust the components.

<span class="mw-page-title-main">Hubble Deep Field</span> Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

<span class="mw-page-title-main">James Webb Space Telescope</span> NASA/ESA/CSA space telescope launched in 2021

The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, distant, or faint for the Hubble Space Telescope. This enables investigations across many fields of astronomy and cosmology, such as observation of the first stars and the formation of the first galaxies, and detailed atmospheric characterization of potentially habitable exoplanets.

<span class="mw-page-title-main">Stephan's Quintet</span> Visual grouping of five galaxies

Stephan's Quintet is a visual grouping of five galaxies of which four form the first compact galaxy group ever discovered. The group, visible in the constellation Pegasus, was discovered by Édouard Stephan in 1877 at the Marseille Observatory. The group is the most studied of all the compact galaxy groups. The brightest member of the visual grouping is NGC 7320, which has extensive H II regions, identified as red blobs, where active star formation is occurring.

<span class="mw-page-title-main">Hubble Ultra-Deep Field</span> Deep-field space image

The Hubble Ultra-Deep Field (HUDF) is a deep-field image of a small region of space in the constellation Fornax, containing an estimated 10,000 galaxies. The original data for the image was collected by the Hubble Space Telescope from September 2003 to January 2004 and the first version of the image was released on March 9, 2004. It includes light from galaxies that existed about 13 billion years ago, some 400 to 800 million years after the Big Bang.

<span class="mw-page-title-main">Great Observatories Origins Deep Survey</span> Astronomical survey that combines observations from 3 great NASA observatories

The Great Observatories Origins Deep Survey, or GOODS, is an astronomical survey combining deep observations from three of NASA's Great Observatories: the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory, along with data from other space-based telescopes, such as XMM Newton, and some of the world's most powerful ground-based telescopes.

<i>Euclid</i> (spacecraft) European visible and near-infrared space observatory

Euclid is a wide-angle space telescope with a 600-megapixel camera to record visible light, a near-infrared spectrometer, and photometer, to determine the redshift of detected galaxies. It was developed by the European Space Agency (ESA) and the Euclid Consortium and was launched on 1 July 2023 from Cape Canaveral in Florida.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">Timeline of the James Webb Space Telescope</span>

The James Webb Space Telescope (JWST) is an international 21st-century space observatory that was launched on 25 December 2021. It is intended to be the premier observatory of the 2020s, combining the largest mirror yet on a near-infrared space telescope with a suite of technologically advanced instruments from around the world.

<span class="mw-page-title-main">NIRCam</span> Imaging instrument aboard the James Webb Space Telescope

NIRCam is an instrument aboard the James Webb Space Telescope. It has two major tasks, as an imager from 0.6 to 5 μm wavelength, and as a wavefront sensor to keep the 18-section mirrors functioning as one. In other words, it is a camera and is also used to provide information to align the 18 segments of the primary mirror. It is an infrared camera with ten mercury-cadmium-telluride (HgCdTe) detector arrays, and each array has an array of 2048×2048 pixels. The camera has a field of view of 2.2×2.2 arcminutes with an angular resolution of 0.07 arcseconds at 2 μm. NIRCam is also equipped with coronagraphs, which helps to collect data on exoplanets near stars. It helps with imaging anything next to a much brighter object, because the coronagraph blocks that light.

<span class="mw-page-title-main">Marcia J. Rieke</span> American astronomer

Marcia Jean Rieke is an American astronomer. She is a Regents' Professor of Astronomy and associate department head at the University of Arizona. Rieke is the Principal Investigator on the near-infrared camera (NIRCam) for the James Webb Space Telescope (JWST). She has also served as the deputy-Principal Investigator on the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) for the Hubble Space Telescope (HST), and as the co-investigator for the multiband imaging photometer on the Spitzer Space Telescope, where she also acted as an outreach coordinator and a member of the Science Working Group. Rieke was also involved with several infrared ground-based observatories, including the MMT Observatory in Arizona. She was vice chair for Program Prioritization of the Astro2010 Decadal Survey Committee, "New Worlds, New Horizons". Marcia Rieke is considered by many to be one of the "founding mothers" of infrared astronomy, along with Judith Pipher.

<span class="mw-page-title-main">WHL0137-LS</span> Most distant known star, discovered 2022

WHL0137-LS, also known as Earendel, is a star located in the constellation of Cetus. Discovered in 2022 by the Hubble Space Telescope, it is the earliest and most distant known star, at a comoving distance of 28 billion light-years. The previous furthest known star, MACS J1149 Lensed Star 1, also known as Icarus, at a comoving distance of 14.4 billion light-years, was discovered by Hubble in 2018. Stars like Earendel can be observed at cosmological distances thanks to the large magnification factors afforded by gravitational lensing, which can exceed 1,000. Other stars have been observed through this technique, such as Godzilla.

<span class="mw-page-title-main">SMACS 0723</span> Galaxy cluster in the constellation Volans

SMACS J0723.3–7327, commonly referred to as SMACS 0723, is a galaxy cluster about 4 billion light years from Earth, within the southern constellation of Volans. It is a patch of sky visible from the Southern Hemisphere on Earth and often observed by the Hubble Space Telescope and other telescopes in search of the deep past. It was the target of the first full-color image to be unveiled by the James Webb Space Telescope (JWST), imaged using NIRCam, with spectra included, showing objects lensed by the cluster with redshifts implying they are 13.1 billion years old. The cluster has been previously observed by the Hubble Space Telescope (HST) as part of the Southern MAssive Cluster Survey (SMACS), as well as Planck and Chandra.

<span class="mw-page-title-main">GLASS-z12</span> Lyman-break galaxy that is one of the oldest galaxies known

GLASS-z12 is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. ALMA observations detected an emission line associated with doubly ionized oxygen at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. Also based on oxygen-related measurements, the age of the galaxy is confirmed.

<span class="mw-page-title-main">CEERS-93316</span> Possibly one of the oldest galaxies observed

CEERS-93316 is a high-redshift galaxy with a spectroscopic redshift z=4.9. Significantly, the redshift that was initially reported was photometric and would have made CEERS-93316 the earliest and most distant known galaxy observed.

<span class="mw-page-title-main">JADES-GS-z13-0</span> High-redshift Lyman-break galaxy that is one of the oldest galaxies known

JADES-GS-z13-0 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Advanced Deep Extragalactic Survey (JADES) on 29 September 2022. Spectroscopic observations by JWST's NIRSpec instrument in October 2022 confirmed the galaxy's redshift of z = 13.2 to a high accuracy, establishing it as the oldest and most distant spectroscopically-confirmed galaxy at the time, with a light-travel distance of 13.4 billion years. Due to the expansion of the universe, its present proper distance is approximately 33 billion light-years. In 2024, two older and more distant galaxies, JADES-GS-z14-0 and JADES-GS-z14-1, were found.

F200DB-045 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 20.4, corresponding to 168 million years after the Big Bang. If confirmed, it would be one of the earliest and most distant known galaxies observed.

References

  1. "Webb's First Deep Field (NIRSpec MSA Emission Spectra)". WebbTelescope.org. Archived from the original on 7 March 2023. Retrieved 14 July 2022.
  2. 1 2 3 Overbye, Dennis; Chang, Kenneth; Tankersley, Jim (11 July 2022). "Biden and NASA Share First Webb Space Telescope Image". The New York Times . ISSN   0362-4331. Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  3. 1 2 3 4 Garner, Rob (11 July 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Archived from the original on 11 July 2022. Retrieved 11 July 2022.
  4. 1 2 "Webb's first deep field". European Space Agency. 11 July 2022. Archived from the original on 12 July 2022. Retrieved 11 July 2022.
  5. "SRELICS". IRAS. Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  6. Isaacs-Thomas, Isabella (11 July 2022). "Here's the deepest, clearest infrared image of the universe ever produced". PBS . Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  7. Noirot, Gaël; Desprez, Guillaume; Asada, Yoshihisa; Sawicki, Marcin; Estrada-Carpenter, Vicente; Martis, Nicholas; Sarrouh, Ghassan; Strait, Victoria; Abraham, Roberto; Bradač, Maruša; Brammer, Gabriel; Iyer, Kartheik; MacFarland, Shannon; Matharu, Jasleen; Mowla, Lamiya (2023). "The first large catalogue of spectroscopic redshifts in Webb's First Deep Field, SMACS J0723.3−7327". Monthly Notices of the Royal Astronomical Society. 525 (2): 1867–1884. arXiv: 2212.07366 . doi: 10.1093/mnras/stad1019 .
  8. Carnall, A. C.; Begley, R.; McLeod, D. J.; Hamadouche, M. L.; Donnan, C. T.; McLure, R. J.; Dunlop, J. S.; Milvang-Jensen, B.; Bondestam, C. L.; Cullen, F.; Jewell, S. M.; Pollock, C. L. (9 November 2022). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L45–L50. arXiv: 2207.08778 . doi: 10.1093/mnrasl/slac136 . ISSN   1745-3925.
  9. Williams, Matt (19 March 2022). "Wondering About the 6 Rays Coming out of JWST's Test Image? Here's why They Happen". Universe Today. Archived from the original on 16 July 2022. Retrieved 15 July 2022.
  10. "Webb's Diffraction Spikes". Archived from the original on 1 January 2024. Retrieved 1 September 2024.
  11. 1 2 Garner, Rob (11 July 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Archived from the original on 11 July 2022. Retrieved 17 July 2023.
  12. Strickland, Ashley (11 July 2022). "President Biden reveals the James Webb Space Telescope's stunning first image". CNN . Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  13. Chow, Denise (11 July 2022). "The Webb telescope's first full-color photo is here – and it's stunning". NBC News . Archived from the original on 12 July 2022. Retrieved 11 July 2022.
  14. Garner, Rob (11 July 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  15. Overbye, Dennis; Chang, Kenneth; Tankersley, Jim (11 July 2022). "Biden and NASA Share First Webb Space Telescope Image – From the White House on Monday, humanity got its first glimpse of what the observatory in space has been seeing: a cluster of early galaxies". The New York Times . Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  16. Pacucci, Fabio (15 July 2022). "How Taking Pictures of 'Nothing' Changed Astronomy - Deep-field images of "empty" regions of the sky from Webb and other space telescopes are revealing more of the universe than we ever thought possible". Scientific American . Archived from the original on 16 July 2022. Retrieved 16 July 2022.
  17. Deliso, Meredith; Longo, Meredith; Rothenberg, Nicolas (14 July 2022). "Hubble vs. James Webb telescope images: See the difference". ABC News. Archived from the original on 15 July 2022. Retrieved 15 July 2022.
  18. Kooser, Amanda (13 July 2012). "Hubble and James Webb Space Telescope Images Compared: See the Difference - The James Webb Space Telescope builds on Hubble's legacy with stunning new views of the cosmos". CNET . Archived from the original on 17 July 2022. Retrieved 16 July 2022.
  19. Atkinson, Nancy (2 May 2022). "Now, We can Finally Compare Webb to Other Infrared Observatories". Universe Today . Archived from the original on 10 May 2022. Retrieved 12 May 2022.
  20. Chow, Denise; Wu, Jiachuan (12 July 2022). "Photos: How pictures from the Webb telescope compare to Hubble's - NASA's $10 billion telescope peers deeper into space than ever, revealing previously undetectable details in the cosmos". NBC News . Archived from the original on 15 July 2022. Retrieved 16 July 2022.