S1PR2

Last updated
S1PR2
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases S1PR2 , AGR16, EDG-5, EDG5, Gpcr13, H218, LPB2, S1P2, DFNB68, sphingosine-1-phosphate receptor 2
External IDs OMIM: 605111 MGI: 99569 HomoloGene: 3118 GeneCards: S1PR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004230

NM_010333

RefSeq (protein)

NP_004221

NP_034463

Location (UCSC) Chr 19: 10.22 – 10.23 Mb Chr 9: 20.87 – 20.89 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sphingosine-1-phosphate receptor 2, also known as S1PR2 or S1P2, is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). [5]

Contents

Function

This protein participates in sphingosine 1-phosphate-induced cell proliferation, survival, and transcriptional activation. [5] It has also been shown to interact with Nogo-A (RTN4), an neurite outgrowth inhibitor. [6] S1PR2 is expressed in neuronal and vascular cells and is crucial for the migration and growth of developing and injured neuronal and vascular system. [7] [8]

Evolution

Paralogues [9]

See also

Related Research Articles

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.

<span class="mw-page-title-main">S1PR1</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 1, also known as endothelial differentiation gene 1 (EDG1) is a protein that in humans is encoded by the S1PR1 gene. S1PR1 is a G-protein-coupled receptor which binds the bioactive signaling molecule sphingosine 1-phosphate (S1P). S1PR1 belongs to a sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). S1PR1 was originally identified as an abundant transcript in endothelial cells and it has an important role in regulating endothelial cell cytoskeletal structure, migration, capillary-like network formation and vascular maturation. In addition, S1PR1 signaling is important in the regulation of lymphocyte maturation, migration and trafficking.

<span class="mw-page-title-main">Alpha-1B adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-1B adrenergic receptor1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">LPAR1</span> Protein

Lysophosphatidic acid receptor 1 also known as LPA1 is a protein that in humans is encoded by the LPAR1 gene. LPA1 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">S1PR3</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 3 also known as S1PR3 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P3.

<span class="mw-page-title-main">GPR6</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 6, also known as GPR6, is a protein which in humans is encoded by the GPR6 gene.

<span class="mw-page-title-main">LPAR4</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 4 also known as LPA4 is a protein that in humans is encoded by the LPAR4 gene. LPA4 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">S1PR4</span> Protein-coding gene in the species Homo sapiens

Sphingosine-1-phosphate receptor 4 also known as S1PR4 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P4.

<span class="mw-page-title-main">LPAR2</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 2 also known as LPA2 is a protein that in humans is encoded by the LPAR2 gene. LPA2 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">S1PR5</span> Protein-coding gene in the species Homo sapiens

Sphingosine-1-phosphate receptor 5 also known as S1PR5 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P5.

<span class="mw-page-title-main">CCBP2</span> Protein-coding gene in the species Homo sapiens

Chemokine-binding protein 2 is a protein that in humans is encoded by the CCBP2 gene.

<span class="mw-page-title-main">LPAR3</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 3 also known as LPA3 is a protein that in humans is encoded by the LPAR3 gene. LPA3 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">RIPK2</span> Protein-coding gene in humans

Receptor-interacting serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the RIPK2 gene.

<span class="mw-page-title-main">ABL2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase ABL2 also known as Abelson-related gene (Arg) is an enzyme that in humans is encoded by the ABL2 gene.

<span class="mw-page-title-main">GRK6</span> Protein-coding gene in the species Homo sapiens

This gene encodes a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinase family, and is most highly similar to GRK4 and GRK5. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">AGTRAP</span> Protein-coding gene in the species Homo sapiens

Type-1 angiotensin II receptor-associated protein is a protein that in humans is encoded by the AGTRAP gene.

<span class="mw-page-title-main">GNB4</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit beta-4 is a protein that in humans is encoded by the GNB4 gene.

<span class="mw-page-title-main">GNA11</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-11 is a protein that in humans is encoded by the GNA11 gene. Together with GNAQ, it functions as a Gq alpha subunit.

<span class="mw-page-title-main">Sphingosine-1-phosphate receptor</span>

The sphingosine-1-phosphate receptors are a class of G protein-coupled receptors that are targets of the lipid signalling molecule Sphingosine-1-phosphate (S1P). They are divided into five subtypes: S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000267534 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000043895 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: S1PR2, sphingosine-1-phosphate receptor 2".
  6. Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME, Schiavo G (14 January 2014). "The Sphingolipid Receptor S1PR2 Is a Receptor for Nogo-A Repressing Synaptic Plasticity". PLOS Biology. 12 (1): e1001763. doi: 10.1371/journal.pbio.1001763 . PMC   3891622 . PMID   24453941.
  7. Rust R, Grönnert L, Gantner C, Enzler A, Mulders G, Weber RZ, Siewert A, Limasale YDP, Meinhardt A, Maurer MA, Sartori AM, Hofer AS, Werner C, Schwab ME (9 July 2019). "Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke". Proceedings of the National Academy of Sciences. 116 (28): 14270–14279. Bibcode:2019PNAS..11614270R. doi: 10.1073/pnas.1905309116 . PMC   6628809 . PMID   31235580.
  8. Rust R, Grönnert L, Weber RZ, Mulders G, Schwab ME (September 2019). "Refueling the Ischemic CNS: Guidance Molecules for Vascular Repair". Trends in Neurosciences. 42 (9): 644–656. doi:10.1016/j.tins.2019.05.006. PMID   31285047. S2CID   195834057.
  9. "GeneCards®: The Human Gene Database".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.