Muscarinic acetylcholine receptor M3

Last updated
CHRM3
4daj.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CHRM3 , EGBRS, HM3, PBS, cholinergic receptor muscarinic 3
External IDs OMIM: 118494 MGI: 88398 HomoloGene: 20191 GeneCards: CHRM3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_033269

RefSeq (protein)

NP_150372

Location (UCSC) Chr 1: 239.39 – 239.92 Mb Chr 13: 9.93 – 10.41 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The muscarinic acetylcholine receptor, also known as cholinergic/acetylcholine receptor M3, or the muscarinic 3, is a muscarinic acetylcholine receptor encoded by the human gene CHRM3. [5]

The M3 muscarinic receptors are located at many places in the body, e.g., smooth muscles, the endocrine glands, the exocrine glands, lungs, pancreas and the brain. In the CNS, they induce emesis. Muscarinic M3 receptors are expressed in regions of the brain that regulate insulin homeostasis, such as the hypothalamus and dorsal vagal complex of the brainstem. [6] These receptors are highly expressed on pancreatic beta cells and are critical regulators of glucose homoestasis by modulating insulin secretion. [7] In general, they cause smooth muscle contraction and increased glandular secretions. [5]

They are unresponsive to PTX and CTX.

Mechanism

Like the M1 muscarinic receptor, M3 receptors are coupled to G proteins of class Gq, which upregulate phospholipase C and, therefore, inositol trisphosphate and intracellular calcium as a signalling pathway. [8] The calcium function in vertebrates also involves activation of protein kinase C and its effects.

Effects

Smooth muscle

Because the M3 receptor is Gq-coupled and mediates an increase in intracellular calcium, it typically causes constriction of smooth muscle, such as that observed during bronchoconstriction. However, with respect to vasculature, activation of M3 on vascular endothelial cells causes increased synthesis of nitric oxide, which diffuses to adjacent vascular smooth muscle cells and causes their relaxation and vasodilation, thereby explaining the paradoxical effect of parasympathomimetics on vascular tone and bronchiolar tone. Indeed, direct stimulation of vascular smooth muscle M3 mediates vasoconstriction in pathologies wherein the vascular endothelium is disrupted. [9]

Diabetes

The muscarinic M3 receptor regulates insulin secretion from the pancreas [7] and are an important target for understanding the mechanisms of type 2 diabetes mellitus.

Some antipsychotic drugs that are prescribed to treat schizophrenia and bipolar disorder (such as olanzapine and clozapine) have a high risk of diabetes side-effects. These drugs potently bind to and block the muscarinic M3 receptor, which causes insulin dysregulation that may precede diabetes. [6]

Other

The M3 receptors are also located in many glands, both endocrine and exocrine glands, and help to stimulate secretion in salivary glands and other glands of the body.

Other effects are:

Agonists

No highly selective M3 agonists are yet available as of 2018, but a number of non-selective muscarinic agonists are active at M3.

Antagonists

Interactions

Muscarinic acetylcholine receptor M3 has been shown to pre-couple with Gq proteins. The polybasic c-tail of the receptor is necessary for the pre-coupling. [8] It has also been shown to interact with Arf6 [13] and ARF1. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Adrenergic receptor</span> Class of G protein-coupled receptors

The adrenergic receptors or adrenoceptors are a class of G protein-coupled receptors that are targets of many catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) produced by the body, but also many medications like beta blockers, beta-2 (β2) agonists and alpha-2 (α2) agonists, which are used to treat high blood pressure and asthma, for example.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

The angiotensin II receptors, (ATR1) and (ATR2), are a class of G protein-coupled receptors with angiotensin II as their ligands. They are important in the renin–angiotensin system: they are responsible for the signal transduction of the vasoconstricting stimulus of the main effector hormone, angiotensin II.

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system.

<span class="mw-page-title-main">Muscarinic agonist</span> Activating agent of the muscarinic acetylcholine receptor

A muscarinic agonist is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

The alpha-2 (α2) adrenergic receptor is a G protein-coupled receptor (GPCR) associated with the Gi heterotrimeric G-protein. It consists of three highly homologous subtypes, including α2A-, α2B-, and α2C-adrenergic. Some species other than humans express a fourth α2D-adrenergic receptor as well. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α2-adrenergic receptor in the central and peripheral nervous systems.

<span class="mw-page-title-main">Beta-2 adrenergic receptor</span> Mammalian protein found in humans

The beta-2 adrenergic receptor, also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor that binds epinephrine (adrenaline), a hormone and neurotransmitter whose signaling, via adenylate cyclase stimulation through trimeric Gs proteins, increases cAMP, and, via downstream L-type calcium channel interaction, mediates physiologic responses such as smooth muscle relaxation and bronchodilation.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA) is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

Muscarinic acetylcholine receptor M<sub>5</sub> Protein-coding gene in the species Homo sapiens

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Muscarinic acetylcholine receptor M<sub>1</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene. It is localized to 11q13.

Muscarinic acetylcholine receptor M<sub>2</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. Multiple alternatively spliced transcript variants have been described for this gene. It is Gi-coupled, reducing intracellular levels of cAMP.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

<span class="mw-page-title-main">Alpha-2B adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-2B adrenergic receptor, is a G-protein coupled receptor. It is a subtype of the adrenergic receptor family. The human gene encoding this receptor has the symbol ADRA2B. ADRA2B orthologs have been identified in several mammals.

<span class="mw-page-title-main">Alpha-1B adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-1B adrenergic receptor1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">Prostaglandin F receptor</span> Protein-coding gene in the species Homo sapiens

Prostaglandin F receptor (FP) is a receptor belonging to the prostaglandin (PG) group of receptors. FP binds to and mediates the biological actions of Prostaglandin F (PGF). It is encoded in humans by the PTGFR gene.

<span class="mw-page-title-main">KCNA2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 2 also known as Kv1.2 is a protein that in humans is encoded by the KCNA2 gene.

<span class="mw-page-title-main">GRK5</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor kinase 5 is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases, and is most highly similar to GRK4 and GRK6. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">4-DAMP</span> Chemical compound

4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) is a selective muscarinic acetylcholine receptor (mAChR) M3 antagonist. It is also able to antagonize M1 receptors but "prefers" M3. It competitively binds to the acetylcholine binding site on mAChRs, causing right-ward shift in the dose response curves for mAChR agonists.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000133019 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046159 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: CHRM3 cholinergic receptor, muscarinic 3".
  6. 1 2 Weston-Green K, Huang XF, Lian J, Deng C (May 2012). "Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels". European Neuropsychopharmacology. 22 (5): 364–373. doi:10.1016/j.euroneuro.2011.09.003. PMID   21982116. S2CID   31739607.
  7. 1 2 Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, et al. (June 2006). "A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo". Cell Metabolism. 3 (6): 449–461. doi:10.1016/j.cmet.2006.04.009. hdl: 10533/177761 . PMID   16753580.
  8. 1 2 3 Qin K, Dong C, Wu G, Lambert NA (August 2011). "Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers". Nature Chemical Biology. 7 (10): 740–747. doi:10.1038/nchembio.642. PMC   3177959 . PMID   21873996.
  9. Keith Parker, Laurence Brunton, Goodman, Louis Sanford, Lazo, John S., Gilman, Alfred (2006). Goodman & Gilman's the pharmacological basis of therapeutics (11th ed.). New York: McGraw-Hill. pp.  185. ISBN   0-07-142280-3.
  10. 1 2 3 4 5 6 Rang HP, Dale MM, Ritter JM, Moore PK (2003). "Ch. 10". Pharmacology (5th ed.). Elsevier Churchill Livingstone. pp.  139. ISBN   0-443-07145-4.
  11. Shiga Y, Minami K, Shiraishi M, Uezono Y, Murasaki O, Kaibara M, Shigematsu A (November 2002). "The inhibitory effects of tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M(3) receptors". Anesthesia and Analgesia. 95 (5): 1269–73, table of contents. doi: 10.1097/00000539-200211000-00031 . PMID   12401609. S2CID   39621215.
  12. Edwards Pharmaceuticals, Inc., Belcher Pharmaceuticals, Inc. (May 2010). "DailyMed". U.S. National Library of Medicine. Retrieved January 13, 2013.
  13. 1 2 Mitchell R, Robertson DN, Holland PJ, Collins D, Lutz EM, Johnson MS (September 2003). "ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor". The Journal of Biological Chemistry. 278 (36): 33818–33830. doi: 10.1074/jbc.M305825200 . PMID   12799371.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.