4-oxoproline reductase

Last updated
4-oxoproline reductase
Identifiers
EC no. 1.1.1.104
CAS no. 37250-37-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a 4-oxoproline reductase (EC 1.1.1.104) is an enzyme that catalyzes the chemical reaction

Contents

4-oxo-L-proline + NADH + H+cis-4-hydroxy-L-proline + NAD+

Thus, the three substrates of this enzyme are 4-oxo-L-proline, NADH, and H+, whereas its two products are cis-4-hydroxy-L-proline and NAD+. [1]

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is 4-hydroxy-L-proline:NAD+ oxidoreductase. This enzyme is also called hydroxy-L-proline oxidase. This enzyme was originally thought to participate in the metabolism of arginine and proline. However, recent data show that it is unlikely since neither 4-oxo-L-proline nor cis-4-hydroxy-L-proline are metabolites of these metabolic pathways.

Gene

The gene encoding 4-oxo-L-proline reductase was identified as 3-hydroxybutyrate dehydrogenase 2 (BDH2) by Sebastian Kwiatkowski and co-workers in 2022. [1] The enzyme is a member of the Short-chain Dehydrogenases/Reductases (SDR) family of enzymes.

Related Research Articles

3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3β-HSD) is an enzyme that catalyzes the biosynthesis of the steroid progesterone from pregnenolone, 17α-hydroxyprogesterone from 17α-hydroxypregnenolone, and androstenedione from dehydroepiandrosterone (DHEA) in the adrenal gland. It is the only enzyme in the adrenal pathway of corticosteroid synthesis that is not a member of the cytochrome P450 family. It is also present in other steroid-producing tissues, including the ovary, testis and placenta. In humans, there are two 3β-HSD isozymes encoded by the HSD3B1 and HSD3B2 genes.

In enzymology, a cholest-5-ene-3β,7α-diol 3β-dehydrogenase (EC 1.1.1.181) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">(R,R)-butanediol dehydrogenase</span> Class of enzymes

In enzymology, a (R,R)-butanediol dehydrogenase (EC 1.1.1.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a 4-phosphoerythronate dehydogenase (EC 1.1.1.290) is an enzyme that catalyzes the chemical reaction

In enzymology, a 15-hydroxyicosatetraenoate dehydrogenase (EC 1.1.1.232) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-hydroxyacyl-CoA dehydrogenase</span> Enzyme

In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction

In enzymology, 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) is an enzyme that catalyzes the chemical reaction:

In enzymology, a dihydrouracil dehydrogenase (NAD+) (EC 1.3.1.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aldehyde dehydrogenase (NAD+)</span>

In enzymology, an aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) is an enzyme that catalyzes the chemical reaction

In enzymology, an aminobutyraldehyde dehydrogenase (EC 1.2.1.19) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-aminoadipate-semialdehyde dehydrogenase</span>

In enzymology, a L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) is an enzyme that catalyzes the chemical reaction

In enzymology, a malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) is an enzyme that catalyzes the chemical reaction

In enzymology, a mycothiol-dependent formaldehyde dehydrogenase (EC 1.1.1.306) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1-pyrroline-5-carboxylate dehydrogenase (EC 1.2.1.88) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Pyrroline-5-carboxylate reductase</span>

In enzymology, a pyrroline-5-carboxylate reductase (EC 1.5.1.2) is an enzyme that catalyzes the chemical reaction

Diacetyl reductase ((R)-acetoin forming) (EC 1.1.1.303, (R)-acetoin dehydrogenase) is an enzyme with systematic name (R)-acetoin:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

11-cis-retinol dehydrogenase (EC 1.1.1.315, RDH5 (gene)) is an enzyme with systematic name 11-cis-retinol:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">4-hydroxy-tetrahydrodipicolinate reductase</span> InterPro Family

In enzymology, a 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8) is an enzyme that catalyzes the chemical reaction

References

  1. 1 2 Kwiatkowski S, Bozko M, Zarod M, Witecka A, Kocdemir K, Jagielski AK, Drozak J (February 2022). "Recharacterization of the Mammalian Cytosolic Type 2 (R)-β-Hydroxybutyrate Dehydrogenase (BDH2) as 4-Oxo-L-Proline Reductase (EC 1.1.1.104)". The Journal of Biological Chemistry: 101708. doi: 10.1016/j.jbc.2022.101708 . PMC   8914325 . PMID   35150746.

Further reading