Almond moth

Last updated

Almond moth
CSIRO ScienceImage 2600 Tropical warehouse moth or almond moth Cadra cautella syn Ephestia cautella.jpg
Caterpillar and moth
Almond moth.jpg
Caterpillar (below) and pupa (above) in peanut husks
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Pyralidae
Genus: Cadra
Species:
C. cautella
Binomial name
Cadra cautella
(Walker, 1863)
Synonyms

Numerous, see text

The almond moth or tropical warehouse moth (Cadra cautella) is a small, stored-product pest. Almond moths infest flour, bran, oats, and other grains, as well as dried fruits. [1] It belongs to the family of snout moths (Pyralidae), and more specifically to the tribe Phycitini of the huge snout moth subfamily Phycitinae. This species may be confused with the related Indian mealmoth (Plodia interpunctella) or the Mediterranean flour moth (Ephestia kuehniella), which are also common pantry pests in the same subfamily. [2]

Contents

Other common names, particularly in nonbiological literature, are dried currant moth and fig moth, which invite confusion with the close relatives Cadra figulilella (raisin moth) and Cadra calidella (dried fruit moth). Like the raisin moth, the almond moth has achieved an essentially cosmopolitan distribution due to inadvertent transport with food products in its larval form. Adults live for about 10 days after eclosion and do not eat, but may drink if water is available. The mating system is polygamous; however, many females will only mate once.

Description and identification

Adult almond months are predominantly light brown in color, with smaller hind wings that are typically gray. When extended, its wingspan ranges from 14 to 22 mm. The back edges of the wings are lined with a short fringe. [3] Almond moth larvae are mostly gray with darker heads. The caterpillar is 12–15 mm long and identifiable by the pattern of spots along its back. [3]

For identification see References [4] [5] [6]

Geographic range

Almond moths are found around the world. Although it thrives best in tropical climates, it has spread to many regions around the globe due to its tendency to infest dry goods that are shipped internationally. [3] For example, it has been transported across Polynesia with copra shipments. [7]

Habitat

As almond moths exists primarily as a pest, its habitat is often some kind of dry food product which is stored in a warehouse or similar industrial environment. Most commonly, they are found in dried fruits, but they have also been found in nuts, beans, flour, and other grains. [3]

Food sources

almond moth larva CSIRO ScienceImage 2667 Caterpillar of the tropical warehouse moth or almond moth Cadra cautella syn Ephestia cautella.jpg
almond moth larva

Larvae

Larval almond moths are hatched onto a variety of dry food products, which then serve as their primary food source. Although the moth infests several different kinds of food, the larvae develop most rapidly on wheat-based products. [8] Moreover, cracked or ground seed and grain products are more ideal for larvae than whole seeds or grains because the larvae are unable to penetrate shells or hulls, which makes feeding more difficult. [9] The caterpillars are cannibalistic; larvae will also eat eggs and other smaller larvae. [10]

Adults

Adult almond moths do not eat during their short lifespan but will drink water if they have access to it. [11]

Parental care

Oviposition

Generally, adult female moths will oviposit around 200 eggs at a time. The timing and number of eggs oviposited has been shown to vary based on several factors, including temperature, humidity, access to water, and type of food source. Low temperatures delay oviposition, and low humidity or lack of access to water seems to reduce the number of eggs oviposited by any given female. [3] Preferred food source upon which to oviposit may vary with the strain of almond moth. [12] Typically, females will oviposit at night. [13]

Life history

Life cycle

The almond moth thrives best in warm, humid environments. The ideal temperature range for development is 30–32 degrees Celsius (86–90 degrees Fahrenheit), and the ideal humidity range is 70-80%. [8] In optimal conditions, it takes about three and a half days for eggs to hatch, and the larvae go through five instars over a period ranging from 17 to 37 days. [10] The pupal stages lasts around seven days in optimal temperature and humidity. [3] Adult females live on average for ten days and adult males live for an average of six to seven days. [11]

Enemies

Predators

Xylocoris flavipes is a type of true bug which feeds preferentially on the eggs and early larval stages of the almond moth. [14] Blattisocius tarsalis is a kind of mite which will feed on almond moth eggs throughout its life cycle, and has been considered as a mechanism for controlling infestations of the almond moth. [15]

Parasites

A variety of species within the order Hymenoptera are parasites of the almond moth. Several parasites of the genus Trichogramma , including T. evanescens, T. cacoeciae, and T. brassicae are common among organisms in the order Lepidoptera and, as such, are known to parasitize almond moths. Trichogramma are very small wasps, and they will puncture the eggs of almond moths and leave their own progeny inside. [16] These parasites will kill the larva inside and later emerge from the egg themselves. [17] Other kinds of wasps, including Bracon hebetor and Venturia canescens, parasitize almond moth larvae in the later instars. [14]

Diseases

Wolbachia is a type of bacteria which infects several types of invertebrates, including the almond moth. Wolbachia is transmitted from mother to offspring, as it resides in the ovaries of its host. As such, Wolbachia does not directly kill the infected moth which houses it, because its primary means of spreading are through the moth's reproduction. Only moths who live to adulthood will be able to reproduce and thus spread the bacteria further. [18]

Mating

Lifetime mating habits

Almond moths are largely polygynous; most males will remate multiple times, but only around 20% of females will remate. Although the amount of sperm produced by males decreases across subsequent copulations, this appears to have no effect on the number of eggs laid and offspring hatched by the female. [19] However, larger spermatophores are correlated with several outcomes that benefit male moths. First, a large spermatophore decreases the likelihood that the recipient female will remate, and if she does, a large spermatophore ensures a better chance of paternity for the first male moth. [20] Mating decreases lifespan for both male and female moths relative to virgins. [21]

Female/male interactions

In almond moths, females will initiate courtship by attracting a male through the adoption of several positions which indicate her receptivity for copulation. Female moths will start by taking on some variation of a calling posture, which typically involves a bowed abdomen, spread wings, and the release of pheromones from the female's ovipositor. [22] Once a male has approached, the female will assume an acceptance posture. This is marked by tensing of the abdominal muscles, which raises the abdomen, spreads the wings, and retracts the ovipositor. [22] To commence copulation, the female remains mostly stationary while the male goes through a series of movements known as "fronting-up", which ensures genital contact. Fronting-up involves the male positioning himself first in front of the female and rapidly flapping his wings, which contain many scent scales. Eventually, the male will make a complete rotation so that they are facing in opposite directions with only their genitalia in contact. The female will either assume an acceptance posture, which essentially means that she remains immobile, or a rejection posture, which can involve movement away from the male or flapping of wings. [22]

Factors affecting mating

In the almond moth, mating lasts between 1.5 and 2 hours. [11] Female moths will mate with both virgin and mated males, but when given a choice in a laboratory setting, females preferentially copulated with mated males. [23] During mating, males first deliver a volume of seminal compounds followed by the spermatophore. These seminal compounds appear to contain chemicals which decrease female remating, and enhance the number of eggs laid by the female. The prespermatophoric ejaculate also likely contains nutritive compounds, which contribute to the health of future offspring and the female herself. While instances of remating are low in almond moths, it is most likely to occur in instances where the female received only seminal compounds and no spermatophore. [24] The spermatophore contains two different kinds of sperm: eupyrene sperm, which contains genetic material, and apyrene sperm, which is sterile. The presence of apyrene sperm is thought to produce a larger refractory period in the female moth by filling her reproductive tract, and thus prolonging the time period before she can remate. Male moths living in a population with high larval density produce higher ratios of apyrene to eupyrene sperm, presumably due to the fact that high larval population density increases the threat of sperm competition. [25]

Interspecific mating

The almond moth often takes part in courtship with other species, especially with the Indian mealmoth (Plodia interpunctella). Even so, successful mating between the species is highly unlikely since they are mechanically isolated from one another. The male sex pheromone serves as a key species recognition signal. This, in addition to other mechanical barriers to insemination, make copulation rare. [26]

Interaction with humans

The almond moth is commonly regarded as a pest because it can be found in various kinds of dry food products including, but not limited to: dried fruits, wheat products, flours, nuts, and seeds. [3] A variety of means by which to control the spread of almond moths have been explored. While pesticides and other chemical agents may reduce infestation, these products can present harmful consequences for the environment and for the humans who consume the foods on which the almond moth feeds. Thus, the exploration of natural enemies of the almond moth (including various kinds of predators and parasites) has been pursued as a means to control infestations. [27]

Synonyms

Because of its wide distribution and accidental introductions, it has become known under a number of junior synonyms: [28]

Related Research Articles

<span class="mw-page-title-main">Pyralidae</span> Family of moths

The Pyralidae, commonly called pyralid moths, snout moths or grass moths, are a family of Lepidoptera in the ditrysian superfamily Pyraloidea. In many classifications, the grass moths (Crambidae) are included in the Pyralidae as a subfamily, making the combined group one of the largest families in the Lepidoptera. The latest review by Eugene G. Munroe and Maria Alma Solis retain the Crambidae as a full family of Pyraloidea.

<i>Trichogramma</i> Genus of parasitic insects

Trichogramma is a genus of minute polyphagous wasps that are endoparasitoids of insect eggs. Trichogramma is one of around 80 genera from the family Trichogrammatidae, with over 200 species worldwide.

<span class="mw-page-title-main">Indianmeal moth</span> Species of moth

The Indianmeal moth, also spelled Indian meal moth and Indian-meal moth, is a pyraloid moth of the family Pyralidae. Alternative common names are hanger-downers, weevil moth, pantry moth, flour moth or grain moth. The almond moth and the raisin moth are commonly confused with the Indian-meal moth due to similar food sources and appearance. The species was named for feeding on Indian meal or cornmeal, and does not occur natively in India. It is also not to be confused with the Mediterranean flour moth, another common pest of stored grains.

<span class="mw-page-title-main">Mediterranean flour moth</span> Species of moth

The Mediterranean flour moth or mill moth is a moth of the family Pyralidae. It is a common pest of cereal grains, especially flour. This moth is found throughout the world, especially in countries with temperate climates. It prefers warm temperatures for more rapid development, but it can survive a wide range of temperatures.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

<i>Habrobracon hebetor</i> Species of wasp

Habrobracon hebetor is a minute wasp of the family Braconidae that is an ectoparasitoid of several species of moth caterpillars. Well known hosts include the larval stage of Plodia interpunctella, the Indianmeal moth, the late larval stage of the Mediterranean flour moth and the almond moth, and the dried fruit moth. This parasitoid has been used commercially as a way to control pests without using chemical insecticides.

<span class="mw-page-title-main">Variable checkerspot</span> Species of butterfly

The variable checkerspot or Chalcedon checkerspot is a butterfly in the family Nymphalidae. It is found in western North America, where its range stretches from Alaska in the north to Baja California in the south and extends east through the Rocky Mountains into Colorado, Montana, New Mexico and Wyoming. The butterfly is usually brown or black with extensive white and yellow checkering and some red coloration on the dorsal wing. Adult wingspan is 3.2–5.7 cm (1.3–2.2 in). Adult butterflies feed on nectar from flowers while larvae feed on a variety of plants including snowberry (Symphoricarpos), paintbrush (Castilleja), Buddleja, Diplacus aurantiacus and Scrophularia californica.

<span class="mw-page-title-main">Confused flour beetle</span> Species of beetle

The confused flour beetle, a type of darkling beetle known as a flour beetle, is a globally found, common pest insect known for attacking and infesting stored flour and grain. They are one of the most common and most destructive insect pests for grain and other food products stored in silos, warehouses, grocery stores, and homes. They engage in cannibalistic behaviors for population control and nutritional benefits. Tribolium confusum practices kin selection to improve individual fitness. Multiple chemicals have been used to manage their infestation, including pyrethin and fungal insecticides.

<i>Utetheisa ornatrix</i> Species of moth

Utetheisa ornatrix, also called the ornate bella moth, ornate moth, bella moth or rattlebox moth, is a moth of the subfamily Arctiinae. It is aposematically colored ranging from pink, red, orange and yellow to white coloration with black markings arranged in varying patterns on its wings. It has a wingspan of 33–46 mm. Moths reside in temperate midwestern and eastern North America as well as throughout Mexico and other parts of Central America. Unlike most moths, the bella moth is diurnal. Formerly, the bella moth or beautiful utetheisa of temperate eastern North America was separated as Utetheisa bella. Now it is united with the bella moth in Utetheisa ornatrix.

<span class="mw-page-title-main">Edith's checkerspot</span> Species of butterfly

Edith's checkerspot is a species of butterfly in the family Nymphalidae. It is a resident species of western North America and among the subspecies, entomologists have long been intrigued by their many phenotypic variations in coloration, wing length, and overall body size. Most populations are monophagous and rely on plants including Plantago erecta and Orthocarpus densiflorus as their host species in developing from eggs through to larvae, pupae, and mature butterflies. Males exhibit polygyny whereas females rarely mate more than once. Males devote most of their attention to mate acquisition, and such mate locating strategies such as hilltopping behavior have developed. Climate change and habitat destruction have impacted certain subspecies. Three subspecies in particular, Euphydryas editha quino, Euphydryas editha bayensis and Euphydryas editha taylori, are currently under protection via the Endangered Species Act.

<i>Zeiraphera canadensis</i> Species of moth

Zeiraphera canadensis, the spruce bud moth, is a moth of the family Tortricidae. It is a small brown moth mainly found in North America, specifically New Brunswick, Quebec, and the north-eastern United States. The adult moth flutters quickly, and stays low among trees during the day and higher above tree cover after sunset. The spruce bud moth relies primarily on the white spruce tree as a host plant. Both male and female spruce bud moths mate multiply, however males have the ability to secrete accessory gland proteins that prevent female re-mating. The moth is univoltine, meaning only one generation hatches per year, and its eggs overwinter from July to May. The species Z. ratzeburgiana is very similar to Z. canadensis and can only be distinguished by the presence of an anal comb in Z. canadensis.

<i>Cadra figulilella</i> Species of moth

Cadra figulilella, the raisin moth, is a moth of the family Pyralidae. The raisin moth is known most commonly as a pest that feeds on dried fruits, such as the raisin and date. It covers a range that includes much of the world, primarily situating itself in areas of California, Florida, the Eastern Mediterranean region, and some parts of Africa, Australia, and South America. The moth prefers to live in a hot, arid climate with little moisture and plentiful harvest for its larvae to feed on. Study of this species is important due to the vast amount of economic damage it causes yearly and worldwide to agriculture crops.

<i>Cadra calidella</i> Species of moth

Cadra calidella, the dried fruit or date moth, is a species of snout moth in the genus Cadra and commonly mistaken for the species Cadra figulilella. It thrives in warmer conditions and is found primarily in Mediterranean countries, although it can also be found in Central Asia, Kazakhstan, Transcaucasia, Caucasus, and the western part of Russia. It feeds on dried fruits, carobs, nuts and seeds, hence earning its colloquial name. This diet damages the food industry, and it is a common storage pest. Because of this, much research has been done to study ways to limit its reproduction rate and population size. It was first described by Achille Guenée in 1845.

Ostrinia scapulalis, the adzuki bean borer or adzuki bean worm, is a species of moth in the family Crambidae. It was described by Francis Walker in 1859. It is one of 20 moths in the genus Ostrinia and is of Eurasian origin. The larvae have a gray mid-dorsal line and can be light pink or beige. The adult adzuki bean borer has a yellowish-brown forewing with jagged lines and variable darker shading, with a wingspan that ranges from 20 to 32 mm. The moths of this species are nocturnal and tend to be attracted to light.

Formally, a nuptial gift is a material presentation to a recipient by a donor during or in relation to sexual intercourse that is not simply gametes in order to improve the reproductive fitness of the donor. Often, such a gift will improve the fitness of the recipient as well. This definition implies neutral gifts, costly gifts and beneficial gifts regarding the fitness of the recipient.

<i>Carabus insulicola</i> Species of beetle

Carabus insulicola is a species of black-colored beetle from the family Carabidae native to Japan. They are also known as ground beetles, and are oval shaped and elongated. They are black with a green metallic hue and vertical stripes running down their backs. The length of a fully grown beetle ranges from 27 to 31 mm. They have three pairs of legs and two pairs of wings. The outer wings are greatly degenerated, making them unable to fly. However, their relatively long legs allow them to walk and run fast. They have prominent mandibles that allow them to capture and eat prey.

<i>Ostrinia furnacalis</i> Species of moth

Ostrinia furnacalis is a species of moth in the family Crambidae, the grass moths. It was described by Achille Guenée in 1854 and is known by the common name Asian corn borer since this species is found in Asia and feeds mainly on corn crop. The moth is found from China to Australia, including in Java, Sulawesi, the Philippines, Borneo, New Guinea, the Solomon Islands, and Micronesia. The Asian corn borer is part of the species complex, Ostrinia, in which members are difficult to distinguish based on appearance. Other Ostrinia such as O. orientalis, O. scapulalis, O. zealis, and O. zaguliaevi can occur with O. furnacalis, and the taxa can be hard to tell apart.

<i>Callosobruchus chinensis</i> Common species of beetle

Callosobruchus chinensis, also known as the adzuki bean weevil, pulse beetle, Chinese bruchid or cowpea bruchid, is a common species of beetle found in the bean weevil subfamily. Although it is commonly known as the adzuki bean weevil, it is in fact not a true weevil, belonging instead to the leaf beetle family, Chrysomelidae.

<i>Aleochara curtula</i> Species of beetle

Aleochara curtula is a species of rove beetle in the family Staphylinidae. They are commonly known as Shortened Minute Rove Beetle. This beetle is found in Europe, Northern Asia and North America.

Various tetradecadienyl acetate compounds serve as insect mating pheromones especially among the Pyralidae. These include:

References

  1. Grabe, Albert (1942): Eigenartige Geschmacksrichtungen bei Kleinschmetterlingsraupen ["Strange tastes among micromoth caterpillars"]. Zeitschrift des Wiener Entomologen-Vereins27: 105–109 [in German]. PDF fulltext
  2. Sasaki, Tetsuhiko; Ishikawa, Hajime (1999-10-01). "Wolbachia Infections and Cytoplasmic Incompatibility in the Almond Moth and the Mediterranean Flour Moth". Zoological Science. 16 (5): 739–744. doi: 10.2108/zsj.16.739 . ISSN   0289-0003. S2CID   85734865.
  3. 1 2 3 4 5 6 7 Integrated management of insects in stored products. Subramanyam, Bhadriraju., Hagstrum, David W., 1944-. New York: M. Dekker. 1996. ISBN   978-0824795221. OCLC   32853462.{{cite book}}: CS1 maint: others (link)
  4. lepiforum.de includes images PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. Parsons, M. Clancey, C. 2023 A Guide to the Pyralid and Crambid Moths of Britain and Ireland Atropos Publishing ISBN: 9780955108648
  6. Goater, B., Dyke . G. and Tweedie, R. 1986 British Pyralid Moths: A Guide to Their Identification ISBN 10: 0946589089 ISBN 13: 9780946589081
  7. Clarke, John Frederick Gates (1986): Pyralidae and Microlepidoptera of the Marquesas Archipelago. Smithsonian Contributions to Zoology416: 1–485. PDF fulltext (214 MB!)
  8. 1 2 Burges, H. D.; Haskins, K. P. F. (May 1965). "Life-cycle of the tropical warehouse moth, Cadra cautella (Wlk.), at controlled temperatures and humidities". Bulletin of Entomological Research. 55 (4): 775–789. doi:10.1017/s0007485300049877. ISSN   1475-2670.
  9. Leonard LeCato, G. (1976). "Yield, development, and weight of Cadra cautella (Walker) and Plodia interpunctella (Hübner) on twenty-one diets derived from natural products". Journal of Stored Products Research. 12 (1): 43–47. doi:10.1016/0022-474x(76)90021-7.
  10. 1 2 Gordon, D. M.; Stewart, R. K. (1988). "Demographic Characteristics of the Stored-Products Moth Cadra cautella". Journal of Animal Ecology. 57 (2): 627–644. doi:10.2307/4929. JSTOR   4929.
  11. 1 2 3 McNamara, Kathryn B.; Elgar, Mark A.; Jones, Therésa M. (2008-07-01). "A longevity cost of re-mating but no benefits of polyandry in the almond moth, Cadra cautella". Behavioral Ecology and Sociobiology. 62 (9): 1433–1440. doi:10.1007/s00265-008-0573-9. ISSN   0340-5443. S2CID   37093852.
  12. Mullen, M. A.; Arbogast, R. T. (1977-10-01). "Influence of Substrate on Oviposition by Two Species of Stored-Product Moths". Environmental Entomology. 6 (5): 641–642. doi:10.1093/ee/6.5.641. ISSN   0046-225X.
  13. Steele, R. W. (April 1970). "Copulation and Oviposition Behaviour of Ephestia cautella (Walker) (Lepidoptera: Phycitidae)". Journal of Stored Products Research. 6 (3): 229–245. doi:10.1016/0022-474X(70)90013-5.
  14. 1 2 Press, J. W.; Cline, L. D.; Flaherty, B. R. (1982). "A Comparison of Two Parasitoids, Bracon hebetor (Hymenoptera: Braconidae) and Venturia canescens (Hymenoptera: Ichnemonidae), and a Predator Xylocoris flavipes (Hemiptera: Anthocoridae) in Supressing Residual Populations of the Almond Moth, Ephestia cautella (Lepidoptera: Pyralidae)". Journal of the Kansas Entomological Society. 55 (4): 725–728. ISSN   0022-8567. JSTOR   25084352.
  15. Haines, C. P. (December 1981). "Laboratory studies on the role of an egg predator, Blattisocius tarsalis (Berlese) (Acari: Ascidae), in relation to the natural control of Ephestia Cautella (Walker) (Lepidoptera: Pyralidae) in Warehouses". Bulletin of Entomological Research. 71 (4): 557–574. doi:10.1017/s0007485300010075. ISSN   1475-2670.
  16. Brower, John H.; Press, John W. (1990-06-01). "Interaction of Bracon hebetor (Hymenoptera: Braconidae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in Suppressing Stored-Product Moth Populations in Small Inshell·Peanut Storages". Journal of Economic Entomology. 83 (3): 1096–1101. doi:10.1093/jee/83.3.1096. ISSN   0022-0493.
  17. Flanders, S. E. (1930). "Mass Production of Egg Parasites of the Genus Trichogramma". Hilgardia. 4 (16): 465–501. doi: 10.3733/hilg.v04n16p465 via CAB Direct.
  18. Ikeda, Takashi; Ishikawa, Hajime; Sasaki, Tetsuhiko (2003-02-01). "Regulation of Wolbachia Density in the Mediterranean Flour Moth, Ephestia kuehniella, and the Almond Moth, Cadra cautella". Zoological Science. 20 (2): 153–157. doi: 10.2108/zsj.20.153 . ISSN   0289-0003. PMID   12655178. S2CID   8806495.
  19. McNamara, Kathryn B.; Jones, Therésa M.; Elgar, Mark A. (2007-06-01). "No cost of male mating experience on female reproductive success in the almond moth, Cadra cautella (Lepidoptera; Pyralidae)". Behavioral Ecology and Sociobiology. 61 (8): 1177–1184. doi:10.1007/s00265-006-0347-1. ISSN   0340-5443. S2CID   43892095.
  20. McNamara, Kathryn B.; Elgar, Mark A.; Jones, Therésa M. (2009). "Large spermatophores reduce female receptivity and increase male paternity success in the almond moth, Cadra cautella". Animal Behaviour. 77 (4): 931–936. doi:10.1016/j.anbehav.2009.01.007. S2CID   53148391.
  21. Gothilf, S.; Shaaya, E.; Levski, S. (1993-01-12). "Effect of sex, age and mating on attraction of Cadra cautella (Walker) (Lep., Phycitidae) to stored food". Journal of Applied Entomology. 116 (1–5): 139–144. doi:10.1111/j.1439-0418.1993.tb01180.x. ISSN   1439-0418. S2CID   84481614.
  22. 1 2 3 Barrer, P. M.; Hill, R. J. (1977-11-01). "Some Aspects of the Courtship Behaviour of Ephestia Cautella (walker) (lepidoptera: Phycitidae)". Australian Journal of Entomology. 16 (3): 301–312. doi: 10.1111/j.1440-6055.1977.tb00110.x . ISSN   1440-6055.
  23. McNamara, Kathryn B.; McKenzie, Julia L.; Elgar, Mark A.; Jones, Therésa M. (2012-08-01). "A female preference for experienced males in the almond moth, Cadra cautella". Behavioral Ecology and Sociobiology. 66 (8): 1141–1147. doi:10.1007/s00265-012-1366-8. hdl: 11343/283316 . ISSN   0340-5443. S2CID   17669452.
  24. McNamara, Kathryn B.; Elgar, Mark A.; Jones, Therésa M. (2008). "Seminal compounds, female receptivity and fitness in the almond moth, Cadra cautella". Animal Behaviour. 76 (3): 771–777. doi:10.1016/j.anbehav.2008.04.018. S2CID   53144161.
  25. McNamara, Kathryn B.; Elgar, Mark A.; Jones, Therésa M. (2010-01-01). "Adult Responses to Larval Population Size in the Almond Moth, Cadra cautella". Ethology. 116 (1): 39–46. doi:10.1111/j.1439-0310.2009.01714.x. ISSN   1439-0310.
  26. Grant, G. G.; Smithwick, E. B.; Brady, U. E. (1975-06-01). "Courtship behavior of phycitid moths. II. Behavioral and pheromonal isolation of Plodia interpunctella and Cadra cautella in the laboratory". Canadian Journal of Zoology. 53 (6): 827–832. doi:10.1139/z75-096. ISSN   0008-4301.
  27. Schöller, Matthias; Flinn, Paul W. (2000). "Parasitoids and Predators". Alternatives to Pesticides in Stored-Product IPM. Springer, Boston, MA. pp. 229–271. doi:10.1007/978-1-4615-4353-4_9. ISBN   9781461369561.
  28. Savela, Markku (2009): Markku Savela's Lepidoptera and some other life forms – Cadra cautella. Version of 2009-04-14. Retrieved 2010-04-10.