Dried fruit

Last updated
Dried fruit
DriedfruitS.jpg
Dried fruit and nuts on a platter
OriginMediterranean, Mesopotamia, India
UsePreservation of fruit for use as food
ProductionEarliest: Dates and raisins

Dried fruit is fruit from which the majority of the original water content has been removed prior to cooking or being eaten on its own. [1] either naturally, Drying may occur by sun, through the use of industrial dehydrators, or by freeze drying. [2] Dried fruit has a long tradition of use dating to the fourth millennium BC in Mesopotamia, and is valued for its sweet taste, nutritional content, and long shelf life.

Contents

In the 21st century, dried fruit consumption is widespread worldwide. Nearly half of dried fruits sold are raisins, followed by dates, prunes, figs, apricots, peaches, apples, and pears. [3] These are referred to as "conventional" or "traditional" dried fruits: fruits that have been dried in the sun or in commercial dryers. Many fruits, such as cranberries, blueberries, cherries, strawberries, and mango are infused with a sweetener (e.g., sucrose syrup) prior to drying. Some products sold as dried fruit, like papaya, kiwifruit and pineapple, are most often candied fruit.

History

Traditional dried fruits such as raisins, figs, dates, apricots, and apples have been a staple of Mediterranean diets for millennia. This is due partly to their early cultivation in the Middle Eastern region known as the Fertile Crescent, made up of parts of modern Iran, Iraq, southwest Turkey, Syria, Lebanon, Palestine, Israel, and northern Egypt. Drying or dehydration was the earliest form of food preservation: figs, dates or grapes which fell from the plant and were sun-dried may have been consumed by early hunter-gatherers as edible and more long-lasting and sweeter. [4] [5] [6]

Nineveh: Procession through groves of date palms, one of the world's first cultivated trees Prisoners Nineveh date-palms.jpg
Nineveh: Procession through groves of date palms, one of the world's first cultivated trees
Other types of dried fruit and nuts Moroccan Dried Fruit and Nuts (4257384208).jpg
Other types of dried fruit and nuts

The earliest recorded mention of dried fruits can be found in Mesopotamian tablets dating to about 1500 BC. These clay slabs, written in Akkadian, the daily language of Babylonia, were inscribed in cuneiform; these were about diets based on grains, vegetables, and fruits such as dates, figs, apples, pomegranates and grapes.[ citation needed ] These early civilizations used dates, date juice evaporated into syrup and raisins as sweeteners, and included dried fruits in their breads.[ citation needed ]

The date palm was one of the first cultivated trees. It was domesticated in Mesopotamia more than 5,000 years ago and grew abundantly in the Fertile Crescent. Dates were the cheapest of staple foods due to high productivity, as an average date palm produced 50 kilograms (110 lb) of fruit a year for more than 60 years.[ citation needed ]

Temple of Nahkt, Egypt. Harvesting grapes, many of which would be dried into raisins. Tomb of Nakht (12).jpg
Temple of Nahkt, Egypt. Harvesting grapes, many of which would be dried into raisins.

Figs were also prized in early Mesopotamia, Palestine, Israel, and Egypt.[ citation needed ] In addition to appearing in wall paintings, many fig specimens were found in Egyptian tombs as funerary offerings.[ citation needed ]

Grape cultivation began in Armenia and the eastern regions of the Mediterranean in the 4th millennium BC.[ citation needed ] Raisins were produced by sun-drying grapes. Raisin production and viticulture spread across northern Africa, including Morocco and Tunisia.

Dried fruits spread through Greece to Italy where they became a major part of diets.[ citation needed ] Ancient Romans consumed raisins in large quantities and at all levels of society, including them as a key part of their common meals, along with olives and fresh fruits.

Figs in a basket, Pompeii. Dried figs were consumed in ancient Rome. Oplontis-Pintures-5643.jpg
Figs in a basket, Pompeii. Dried figs were consumed in ancient Rome.

Having dried fruits was essential in ancient Rome as these instructions for housekeepers around 100 BC tell: "She must keep a supply of cooked food on hand for you and the servants. She must keep many hens and have plenty of eggs. She must have a large store of dried pears, sorbs, figs, raisins, sorbs in must, preserved pears, grapes, and quinces. She must also keep preserved grapes in grape pulp and in pots buried in the ground, as well as fresh Praenestine nuts kept in the same way, and Scantian quinces in jars, and other fruits that are usually preserved, as well as wild fruits. All these she must store away diligently every year." [7]

Dried figs were added to bread and formed a major part of the winter food of common people. They were rubbed with spices such as cumin, anise, fennel seeds or toasted sesame, wrapped in fig leaves and stored in jars.[ citation needed ]

Plums, apricots and peaches have their origins in Asia. [8] They were domesticated in China in the 3 BC and spread to the Fertile Crescent where they were commonly eaten.[ citation needed ]

Production

California dried fruit, 2007 [9]
FruitTons
Apricots 1,970
Dates 16,300
Figs 14,500
Peaches 1,365
Pears (Williams or Bartlett) 400
Prunes 81,000
Raisins 350,000
Dried fruits less commonly produced: 1 zante currants, 2 black mulberry, 3 white mulberry, 4 physalis, 5 aronia (chokeberries), 6 sea-buckthorn, 7 raspberry, 8 kumquats, 9 white raisins (dried in the shade), 10 blueberries, 11 goji, 12 cherries, 13 cranberries, 14 sour cherries, and 15 barberries. Dried berries.jpg
Dried fruits less commonly produced: 1 zante currants, 2 black mulberry, 3 white mulberry, 4 physalis, 5 aronia (chokeberries), 6 sea-buckthorn, 7 raspberry, 8 kumquats, 9 white raisins (dried in the shade), 10 blueberries, 11 goji, 12 cherries, 13 cranberries, 14 sour cherries, and 15 barberries.

Dried fruit is produced in most regions of the world, and consumption occurs in all cultures and demographic segments. As of 2010, raisins accounted for about two thirds of this volume. [10] California produces the largest percentage of the US's and the world's[ citation needed ] dried fruit crop. It accounts for over 99% of the US crop of raisins and dried plums, 98% of dried figs, 96% of dried peaches, 92% of apricots and over 90% of dates. Most of California dried fruit production is centered in the San Joaquin Valley where the soil and climate, especially the hot, dry summers, provide ideal growing conditions. While these fruits were commonly dried in the sun in the past, now only raisins are almost entirely naturally sun-dried. [11]

Preparation and use

Fruits can be dried whole (e.g., grapes, berries, apricot, plum), in halves, or as slices (e.g., mango, papaya, kiwi). Alternatively, they can be chopped after drying (e.g., dates), made into pastes, or concentrated juices. The residual moisture content can vary from small (3–8%) to substantial (16–18%), depending on the type of fruit. Fruits can also be spread out, dried and cut into stripes in its puree form without the addition of sugar or fats with at least 50% moisture content as fruit leather, (see patent listed under the references section) [12] [13] or as a powder by spray or drum drying. They can be freeze dried. Fresh fruit is frozen and placed in a drying chamber under a vacuum. Heat is applied, and water evaporates from the fruit while it is still frozen. [14] The fruit becomes very light and crispy and retains much of its original flavor. Dried fruit is widely used by the confectionery, baking, and sweets industries. Food manufacturing plants use dried fruits in various sauces, soups, marinades, garnishes, puddings, and food for infants and children.

As ingredients in prepared food, dried fruit juices, purées, and pastes impart sensory and functional characteristics to recipes:

Dozens of types of dried fruit and fruit leather at a market in Yerevan Yerevan Market (5211865578).jpg
Dozens of types of dried fruit and fruit leather at a market in Yerevan

The high drying and processing temperatures, the intrinsic low pH of the fruit, and the low water activity (moisture content) in dried fruit make them a stable food.

Both golden and conventional raisins are made from the same grape. Golden raisins are treated with sulfur dioxide. Raisins 01.jpg
Both golden and conventional raisins are made from the same grape. Golden raisins are treated with sulfur dioxide.

Sulfur dioxide is used as an antioxidant in some dried fruits to protect their color and flavor. For example, in golden raisins, dried peaches, apples, and apricots, sulfur dioxide is used to keep them from losing their light color by blocking browning reactions that darken fruit and alter their flavor. Over the years, sulfur dioxide and sulfites have been used by many populations for a variety of purposes. Sulfur dioxide was first employed as a food additive in 1664, and was later approved for such use in the United States as far back as the 1800s.

Sulfur dioxide, while harmless to healthy individuals, can induce asthma when inhaled or ingested by sensitive people. The U.S. Food and Drug Administration (FDA) estimates that one out of every hundred people is sulfite-sensitive, and about 5% of asthmatics are also at risk of suffering an adverse reaction. Given that about 10% of the population suffers from asthma, this figure translates to 0.5% of the whole population with potential for sulfite-sensitivity. These individuals make up the subgroup of greatest concern and are largely aware of the need to avoid sulfite-containing foods. Consequently, the FDA requires food manufacturers and processors to disclose the presence of sulfiting agents in concentrations of at least 10 parts per million. [15]

In Taipei, Taiwan, a 2010 city health survey found one-third of tested dried fruit products failed health standard tests, most having excessive amounts of sodium cyclamate, some at levels 20 times higher than the legal limit. [16]

Turkey exported 1.5 billion dollars worth of dried fruit in 2021 and became the world's largest exporter of dried fruit. [17]

Health

Glycemic index

Glycemic index of different dried fruits [18]
FruitGlycemic index
Dates (brand or variety not specified)62
Dried apples (brand not specified)29
Dried apricots (brand not specified)30
Dried peaches35
Dried plums (Sun Sweet)29
Figs (Dessert Maid)61
Raisins (Sun-Maid)54

Traditional dried fruit has a low to moderate glycemic index (GI), a measure of how a food affects blood sugar levels. GI measures an individual's response to eating a carbohydrate-containing food (usually 50 grams of available carbohydrates) compared to the individual's response to the same amount of carbohydrates from either white bread or glucose. Carbohydrate-containing foods are classified as high (above 70), moderate (56–69), or low (0–55) GI. [19] Foods with high fiber content generally have a low GI. However, other factors also contribute to a food's glycemic response, such as the type of carbohydrate or sugar present, the physical characteristics of the food matrix, and the presence of organic acids. All studies assessing the GI of dried fruit show that they are low- to moderate-GI foods and that the insulin response is proportional to their GI. Factors thought to contribute to this glycemic response include the viscous texture of dried fruits when chewed, their whole food matrix, the presence of phenolic compounds and organic acids and the type of sugar present (about 50% fructose in most traditional dried fruit). [20]

Research

Consumption of dried fruit is under preliminary research for the potential to improve nutrition and affect chronic diseases. [21]

Types

Dehydration methods

People have practiced food preservation since ancient times. Many folktales describe ways of preserving foods in one way or another according to local and cultural traditions. Dehydration methods help to prevent food from spoilage and to maintain it for a longer period of time while keeping it suitable for consumption. Reducing the amount of water in fruits helps prevent bacteria, yeast or fungi from growing on them. There are several processes that can be used in the production of dried fruit, each of which affects its appearance, rehydration properties, and nutrients differently. These drying processes include sun drying, tray (air) drying, freeze drying, and vacuum microwave drying. [22] Each process has its own benefits and disadvantages.

Apricots drying in the sun in a mountain-slope orchard of Turkey Apricots Drying In Cappadocia.JPG
Apricots drying in the sun in a mountain-slope orchard of Turkey

Sun drying

This process uses sun exposure as its thermal source, combined with natural airflow. It is also a traditional drying method to reduce the moisture of fruits by spreading them under the sun. Warmer temperatures evaporate the moisture, and lower humidity allows moisture to move quickly from the fruit to the air. However, there are many disadvantages associated with it, such as the longer time required to dry, the hot climate and daylight, and risk of invasion by animals and unwanted microorganisms.

Tray drying

A tray dryer is similar to a convection drier, which is placed in enclosed, insulated chambers and trays on top of each other in the tray. Input materials are batch-fed, placed in trays, and loaded into ovens for drying. Dryers are used in processing where drying and heating are important parts of the industrial manufacturing process, like dried fruits. Tray drying means dehydrating small pieces of fruit from a source of hot, dry air or the sun until they are dry enough to store at ambient temperature with minimal spoilage. Despite its poor re-hydration properties and shrunken appearance, this process requires a short period of time along with controlled humidity and heated air.

Tray Drying Tray of Dried Swiss Chard NGM-v31-p477-B.jpg
Tray Drying

Freeze drying

Freeze-drying is a special form of drying that removes all moisture and has less effect on the taste of food than normal dehydration. Freeze drying is a water removal process commonly used to preserve pear material. The fruit is placed in a vacuum chamber at low heat to increase shelf life. This process works by freezing the material, then reducing the pressure and adding heat to neutralize the frozen water in the material. Unlike the other drying methods, this method allows the dried mango to retain its shape, retain the highest color value, and provide a great rehydration property despite its high costs. Foods that contain adequate amounts of water are very easy to work with and will maintain their initial shape after the freeze-drying process is complete.

Vacuum microwave drying

The microwave generates a specific amount of energy, easily shortening the drying time. In addition, the boiling point of water is lowered under vacuum, causing a high temperature inside the dried particles on the surface of the product. Microwave vacuum drying is a dehydration process that uses microwave radiation to generate heat at full pressure (chamber pressure). During vacuum drying, high-energy water molecules propagate to the surface and evaporate due to low pressure. Due to the absence of air, vacuum drying inhibits oxidation and maintains the color, texture, and taste of dried products. This device can improve the quality of products, and the equipment can prolong the shelf life of food, preserve the original taste and nutrients of food, maintain the physical activity of raw materials, enhance the function of healthy food, and increase the value of agricultural products. This method provides better flavor retention, greater rehydration, least nutrient loss, and least color change among other thermal drying methods, along with a faster drying rate compared to freeze drying. Vacuum microwave not only dries the mango quickly, it also reduces the amount of fibers and microorganisms present in the pulpy part of the fruit. The fruit taste is distorted at some rate. The vacuum drying also reduces the amount of water contained, and in a closed environment, no other microorganisms can enter into the fruit.

See also

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

<span class="mw-page-title-main">Raisin</span> Dark-colored dried large grape

A raisin is a dried grape. Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking, and brewing. In the United Kingdom, Ireland, New Zealand, Australia and South Africa, the word raisin is reserved for the dark-colored dried large grape, with sultana being a golden- or green-colored dried grape, and currant being a dried small Black Corinth seedless grape.

<span class="mw-page-title-main">Food drying</span> Method of food preservation

Food drying is a method of food preservation in which food is dried. Drying inhibits the growth of bacteria, yeasts, and mold through the removal of water. Dehydration has been used widely for this purpose since ancient times; the earliest known practice is 12,000 B.C. by inhabitants of the modern Asian and Middle Eastern regions. Water is traditionally removed through evaporation by using methods such as air drying, sun drying, smoking or wind drying, although today electric food dehydrators or freeze-drying can be used to speed the drying process and ensure more consistent results.

<span class="mw-page-title-main">Jerky</span> Lean meat dried to prevent spoilage

Jerky or “charqui” is lean trimmed meat cut into strips and dehydrated to prevent spoilage. Normally, this drying includes the addition of salt to prevent bacteria growth. The word "jerky" derives from the Quechua word ch'arki which means "dried, salted meat".

<span class="mw-page-title-main">Food browning</span> Food process

Browning is the process of food turning brown due to the chemical reactions that take place within. The process of browning is one of the chemical reactions that take place in food chemistry and represents an interesting research topic regarding health, nutrition, and food technology. Though there are many different ways food chemically changes over time, browning in particular falls into two main categories: enzymatic versus non-enzymatic browning processes.

<span class="mw-page-title-main">Freeze drying</span> Low temperature dehydration process

Freeze drying, also known as lyophilization or cryodesiccation, is a low temperature dehydration process that involves freezing the product and lowering pressure, thereby removing the ice by sublimation. This is in contrast to dehydration by most conventional methods that evaporate water using heat.

<span class="mw-page-title-main">Sun-Maid</span> American cooperative of raisin growers

Sun-Maid Growers of California is an American farmer-owned cooperative of raisin growers headquartered in Fresno, California. Sun-Maid is one of the largest raisin and dried fruit processors in the world. As a cooperative, Sun-Maid is made up of approximately 850 family farmers who grow raisin grapes within a 100-mile (160-kilometer) radius of the processing plant. Sun-Maid also sources dried fruit beyond this geographical area.

<span class="mw-page-title-main">Dried cranberry</span> Partially dehydrating fresh cranberries

Dried cranberries are made by partially dehydrating fresh cranberries, a process similar to making grapes into raisins. They are used in trail mix, salads, breads, with cereals, or eaten on their own. Dried cranberries may be marketed as craisins due to the similarity in appearance with raisins, although the word "Craisin" is a registered trademark of Ocean Spray. Craisins were introduced as part of a packaged cereal produced by Ralston Purina in 1989.

<span class="mw-page-title-main">Drying</span> Removal of water or another solvent by evaporation from a solid, semi-solid or liquid

Drying is a mass transfer process consisting of the removal of water or another solvent by evaporation from a solid, semi-solid or liquid. This process is often used as a final production step before selling or packaging products. To be considered "dried", the final product must be solid, in the form of a continuous sheet, long pieces, particles or powder. A source of heat and an agent to remove the vapor produced by the process are often involved. In bioproducts like food, grains, and pharmaceuticals like vaccines, the solvent to be removed is almost invariably water. Desiccation may be synonymous with drying or considered an extreme form of drying.

<span class="mw-page-title-main">Garlic powder</span> Spice derived from dehydrated garlic

Garlic powder is a spice that is derived from dehydrated garlic and used in cooking for flavour enhancement. The process of making garlic powder includes drying and dehydrating the vegetable, then powdering it through machinery or home-based appliances depending on the scale of production. Garlic powder is a common component of spice mix. It is also a common component of seasoned salt.

<span class="mw-page-title-main">Food dehydrator</span> Home food preservation

A food dehydrator is a device that removes moisture from food to aid in its preservation. Food drying is a method of preserving fruit, vegetables and meats that has been practiced since antiquity.

Banana powder is a powder made from processed bananas. It is used as a component for production of milk shakes and baby foods. It is also used in the manufacture of various types of cakes and biscuits.

<span class="mw-page-title-main">Fruit production in Iran</span>

Iran ranks 1st in fruit production in the Middle East and North Africa. Iran has been ranked between 8th and 10th in global fruit production in different years. Iran produces Persian walnut, melon, tangerine, citrus fruits, Kiwifruit, dates, cherries, pomegranates, peach, oranges, raisins, saffron, grapes, Apricot, Pitted Prune and watermelon.

<span class="mw-page-title-main">Pickled fruit</span> Fruit that has been preserved by anaerobic fermentation in brine or immersion in vinegar

Pickled fruit refers to fruit that has been pickled. Pickling is the process of food preservation by either anaerobic fermentation in brine or immersion in vinegar. Many types of fruit are pickled. Some examples include peaches, apples, crabapples, pears, plums, grapes, currants, tomatoes and olives. Vinegar may also be prepared from fruit, such as apple cider vinegar.

Fruktsoppa is a fruit soup that is typically prepared using dried fruits, and usually served as a dessert dish. The dish has been described as a "cold fruit pudding." It is a traditional dessert in Sweden and Norway. Historically, during the winter months in Scandinavian countries, fresh fruit was generally unavailable, so people used dried fruits for the preparation of various dishes, including fruktsoppa. The soup may be served hot or cold. The soup can be made with one fruit or with multiple fruits; a soup which is made with multiple fruits may be called blandad fruktsoppa, which is Swedish for "mixed fruit soup".

Vacuum drying is the mass transfer operation in which the moisture present in a substance, usually a wet solid, is removed by means of creating a vacuum.

<span class="mw-page-title-main">Intermediate moisture food</span> Shelf-stable food products with moisture contents of 15-40%

Intermediate moisture foods (IMF) are shelf-stable products that have water activities of 0.6-0.85, with a moisture content ranging from 15% - 40% and are edible without rehydration. These food products are below the minimum water activity for most bacteria (0.90), but are susceptible to yeast and mold growth. Historically, ancient civilizations would produce IMF using methods such as sun drying, roasting over fire and adding salt to preserve food for winter months or when preparing for travel. Currently, this form of processing is achieved by using one of four methods: partial drying, osmotic drying using a humectant, dry infusion and by formulation. A variety of products are classified as IMF, such as dried fruits, sugar added commodities, marshmallows, and pie fillings.

<span class="mw-page-title-main">Food powder</span> Form of food

Food powder is the most common format of dried solid food material that meets specific quality standards, such as moisture content, particle size, and particular morphology. Common powdery food products include milk powder, tea powder, cocoa powder, coffee powder, soybean flour, wheat flour, and chili powder. Powders are particulate discrete solid particles of size ranging from nanometres to millimetres that generally flow freely when shaken or tilted. The bulk powder properties are the combined effect of particle properties by the conversion of food products in solid state into powdery form for ease of use, processing and keeping quality. Various terms are used to indicate the particulate solids in bulk, such as powder, granules, flour and dust, though all these materials can be treated under powder category. These common terminologies are based on the size or the source of the materials.

<span class="mw-page-title-main">Dried mango</span> Preserved fruit food product

The mango fruit is commonly dried and eaten as a snack.

References

  1. Oxford English Dictionary, "dried fruit", 3rd ed., Oxford University Press, 2010. Accessed November 21, 2024. https://www.oxfordlearnersdictionaries.com/definition/english/dried-fruit
  2. Herringshaw, Dorris. "Drying Fruits and Vegetables | Ohioline". Ohioline. Retrieved 21 November 2024.
  3. Hui, Y. H. Handbook of fruits and fruit processing. Blackwell Publishing, Oxford UK (2006) p. 81
  4. Trager J. The food chronology: a food lover's compendium of events and anecdotes, from prehistory to the present. Henry Holt and Company Inc, New York, NY 1995
  5. Brothwell D, Brothwell P. Food in antiquity: A survey of the diet of early people. Johns Hopkins University Press, Baltimore and London (1998) pp. 144–147
  6. Tannahill R. Food in History, Three Rivers Press, New York (1998) pp. 49–51
  7. Cato, (M.P.) "On Agriculture". Harvard University Press, Cambridge. (1934) (W.D. Hooper, translator) Archived June 13, 2010, at the Wayback Machine , retrieved 2011-12-19
  8. Janick J. "History of Horticulture" (2002) Archived June 13, 2010, at the Wayback Machine , retrieved 2011-12-19
  9. Agricultural Statistics Board, USDA. "Noncitrus Fruits and Nuts 2007 Summary", July 2008, retrieved 2011-12-19
  10. United States Department of Agriculture. "Fruit and Tree Nut Situation and Outlook: A Report from the Economic Research Service" http://www.ers.usda.gov/Publications/FTS Archived 2010-10-11 at the Wayback Machine
  11. Agricultural Marketing Resource Center at Iowa State University. "Fruits", retrieved 2011-12-19
  12. National Center for Home Food Preservation—"Drying Fruits and Vegetables", accessed 28 June 2009
  13. Cambridge University Press. Fruit leather. In Cambridge Dictionary. Retrieved November 21, 2024, from https://dictionary.cambridge.org/dictionary/english/fruit-leather
  14. "Crispy Green product info" Archived 2011-12-01 at the Wayback Machine , retrieved 2011-12-19
  15. Food and Drug Administration, Science & Research Volume IV: Food and Color Additives, retrieved 2011-12-19
  16. China Post, retrieved 2011-12-19
  17. Gazete, Banka (22 November 2021). "Kuru meyvede dünya lideri Türkiye". Gazete Banka. p.  https://gazetebanka.com/ . Retrieved 22 November 2021.
  18. Glycemic index, retrieved 2011-12-19
  19. The Glycemic Index and GI Database, University of Sydney, retrieved 2011-12-19
  20. Kim Y et al. "Raisins are a low to moderate glycemic index food with a corresponding low insulin index" Nutr Res 2008; 28:304–308
  21. Mossine VV, Mawhinney TP, Giovannucci EL (2020). "Dried Fruit Intake and Cancer: A Systematic Review of Observational Studies". Advances in Nutrition. 11 (2): 237–250. doi:10.1093/advances/nmz085. PMC   7442373 . PMID   31504082.
  22. Izli, Nazmi; Izli, Gökcen; Taskin, Onur; Izli, Nazmi; Izli, Gökcen; Taskin, Onur (1 December 2017). "Influence of different drying techniques on drying parameters of mango". Food Science and Technology. 37 (4): 604–612. doi: 10.1590/1678-457x.28316 .

USpatent 20090169694A1,Fleisch, Jens; Hilker, Erhard& Markwardt, Klaus,"Method and Apparatus for Producing Fruit Leather from a Fruit Mass",published 2009-07-02,issued 2012-05-15 

Further reading

Commons-logo.svg Media related to Dried fruit at Wikimedia Commons