Mediterranean flour moth

Last updated

Mediterranean flour moth
Ephestia kuehniella male.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Pyralidae
Genus: Ephestia
Species:
E. kuehniella
Binomial name
Ephestia kuehniella
Zeller, 1879
Synonyms
  • Anagasta huchinella( lapsus )
  • Anagasta kuchinella(lapsus)
  • Anagasta kühmiella(lapsus)
  • Anagasta kuehniela(lapsus)
  • Anagasta kuehniella(Zeller, 1879)
  • Anagasta kurhirela(lapsus)
  • Anagasta lunella(lapsus)
  • Ephestia fuscofasciellaRagonot, 1887
  • Ephestia gitonellaDruce, 1896
  • Ephestia kühniellaZeller, 1879
  • Homoeosoma albaRoesler, [1965]
  • Homoeosoma ischnomorphaMeyrick, 1931
  • Homoeosoma nigraRoesler, [1965]

The Mediterranean flour moth or mill moth (Ephestia kuehniella) [1] is a moth of the family Pyralidae. [2] It is a common pest of cereal grains, especially flour. This moth is found throughout the world, especially in countries with temperate climates. [3] It prefers warm temperatures for more rapid development, but it can survive a wide range of temperatures. [3]

Contents

The Mediterranean flour moth is frequently found in warm places with stored grain products, such as flour mills and bakeries, where it can breed year round. Flour mills have a particular problem with the Mediterranean flour moth because the caterpillars spin silk that clogs machinery. The most effective pest control strategy for this moth is sanitation of facilities and sealing grain containers to prevent infestation, but some pesticides may also be used. [4]

Description

Adult Mediterranean flour moths have pale gray bodies. Their forewings are gray with black zigzag markings while the hindwings are an off-white color. [4] The wingspan is 1.5-2.6 cm. [2] Larvae (caterpillars) are white or pink with black spots and dark heads. Pupae are reddish brown. [4]

Geographic range

First recorded as a pest species in Germany in 1879, the Mediterranean flour moth was found in several locations across Europe in subsequent years. In the late 19th century, roller flour mills caused the moth to become a more widespread pest. It became a common species in Britain, North America, and Australia by 1980. The Mediterranean flour moth is now found throughout the world, though it tends to be rare in the Far East with the exception of Japan. Areas of the world with temperate climates are most likely to have infestations of the Mediterranean flour moth in their flour mills. [3]

Habitat

Mediterranean flour moths live in stored grain products. They primarily infest flour, but they can be found in a variety of cereal grains. [1] The moth is a major pest species in flour mills, and it may also be found in bakeries and warehouses, especially in cereal products that have been left undisturbed for an extended period of time. This species particularly enjoys inhabiting flour mills and bakeries due to the heat, which allows it to breed year round. [3]

Food resources

Caterpillars feed on flour, meal, whole grains, and grain residues. [4] Unlike other pest species of moths, E. kuehniella is almost always found in cereal grain products as opposed to other stored foods such as dried fruit. [3] Adult Mediterranean flour moths are short-lived and do not feed. [1]

Life cycle

E. kuehniella females typically oviposit on the second night after emergence. This is because they require a few hours for the sperm to move from the bursa copulatrix to the vestibulum, where fertilization occurs. [5] Females will then lay anywhere between 116 and 678 eggs in a food source, such as flour, to which the eggs often become attached. When the eggs hatch, larvae spin silken tubes around themselves. They spend about 40 days maturing within these tubes. Full grown larvae disperse to new locations and spin silken cocoons in which they develop into pupae. Adult moths emerge in 8–12 days. [4]

In hot weather, the moth's entire life cycle may take no more than five to seven weeks. [4] Though it prefers warm temperatures because it can develop more rapidly, E. kuehniella can complete development in temperatures ranging from 12 °C to about 30 °C. [3]

E. kuehniella is also largely influenced by circadian rhythm. Adult emergence most often occurs during the day, while other adult activities, including female calling, male courtship, mating, and oviposition typically occur at night. [5]

Enemies

Parasites

Wolbachia

Mediterranean flour moths are infected by Wolbachia , a genus of bacteria that affects the reproduction of its host species. These maternally-inherited bacteria cause cytoplasmic incompatibility in E. kuehniella, which means that sperm and eggs cannot join to form a viable embryo. Infected males produce sperm that is only compatible with eggs from infected females, resulting in a decrease in fitness for uninfected females. Different strains of Wolbachia cause different levels of cytoplasmic incompatibility. [6]

Nemeritis canascens

E. kuehniella is parasitized by Nemeritis canascens, a parasitic wasp of the family Ichneumonidae. The larvae of this wasp are endoparasites of the moth during the moth's larval phase. Larvae of Nemeritis feed on the blood of the host caterpillars. Nemeritis remains in its first instar until the host caterpillar is in its last instar of development. The parasitic larvae feed more quickly as the host caterpillar gets older, accounting for rapid development in late final-instar caterpillars and delayed development in first instar caterpillars. The changing rate of feeding in the parasite is attributed to the changing composition of the host blood on which it feeds. [7]

Mating

Mating Ephestia kuehniella.jpg
Mating

The maturation of both male and female reproductive systems occurs soon after emergence. [5] Adult moths commonly mate on the day of emergence, which maximizes the reproductive success of females. [8] Female calling and male courtship behaviors peak just prior to peak mating—these behaviors are useful in successful mating. The Mediterranean flour moth is a protogynous species, so females emerge significantly earlier than males. This mechanism may be used to reduce inbreeding, as females will emerge and mate with other males prior to their brothers emerging. [5] The optimal mating time for females is on the same day they emerge, because fertility decreases when mating occurs later. Females release pheromones as a type of calling behavior to demonstrate to males when they are most fertile. [9]

In a study of the effects of food shortage and larval crowding on male reproductive phenotype, it was found that males who emerged as adults from the population with the most crowding had smaller forewings, thorax, and head, as well as a lower body mass. It is worth noting, however, that these smaller males had larger forewings relative to their body mass. It is suggested that this may be beneficial in terms of mate searching at higher densities by promoting their dispersal. [10]

It was also found that while mating frequency did not seem to be affected by larval density, those from higher densities had a shorter adult lifespan and produced fewer eupyrene sperm. In order to increase their reproductive success at higher densities, and thus at higher levels of sperm competition, males maintain apyrene sperm production and mate more at a higher frequency. [10]

E. kuehniella is a polyandrous species. [5]

Interactions with humans

Pest of stored grains

Larvae will attack stores of flour or other cereal grains as a source of food, but the most damage is done when they interfere with machinery in the mills. The web-like material that larvae spin clogs machines. Grain mills have had to shut down due to this issue. [4] They also cause damage by biting holes in silk screens used to sift flour. [3]

Pest control

Prevention

The most effective pest control method for the Mediterranean flour moth is preventing it from infesting stored grains. This involves basic sanitation practices such as thoroughly cleaning out bins and surrounding areas of the floors and walls to remove old grains and particles of dust. Sealing all cracks and crevices in the building and grain bins can prevent moths from entering. Checking grain bins frequently (especially in warm months) for hot spots, mold, and insects can also reduce risk of infestation. [11] Sanitation is generally the preferred strategy for preventing Mediterranean flour moth infestation. [4]

Pesticides

Insecticides are sometimes used as well as fumigants if infestation has already occurred. Both of these pest control options involve toxic chemicals and require safety precautions to use. [4] Methyl bromide was commonly used as a pesticide in several countries, but was later banned for environmental reasons when it was classified as an ozone depleter. [12]

Biological control

Trichogramma parasitoids are a potential biological control for the Mediterranean flour moth, because they can kill the host in the egg stage, before it reaches the destructive larval phase. The success of Trichogramma in biological control programs is influenced by host diet and the resulting nutritional quality of the eggs. Temperature can also impact host suitability for the parasitoid. [12] [13]

Irradiation

Gamma radiation is another control that has been considered as an alternative to pesticide use. Low-dose irradiation has been approved by the FDA as a safe pest control measure in foods. This method is fast and not temperature dependent. Irradiation treatment can prevent adult emergence or introduce sex-linked lethal mutations that cause inherited sterility. [14]

Related Research Articles

<span class="mw-page-title-main">Pyralidae</span> Family of moths

The Pyralidae, commonly called pyralid moths, snout moths or grass moths, are a family of Lepidoptera in the ditrysian superfamily Pyraloidea. In many classifications, the grass moths (Crambidae) are included in the Pyralidae as a subfamily, making the combined group one of the largest families in the Lepidoptera. The latest review by Eugene G. Munroe and Maria Alma Solis retain the Crambidae as a full family of Pyraloidea.

<span class="mw-page-title-main">Indianmeal moth</span> Species of moth

The Indianmeal moth, also spelled Indian meal moth and Indian-meal moth, is a pyraloid moth of the family Pyralidae. Alternative common names are weevil moth, pantry moth, flour moth or grain moth. The almond moth and the raisin moth are commonly confused with the Indian-meal moth due to similar food sources and appearance. The species was named for feeding on Indian meal or cornmeal, and does not occur natively in India. It is also not to be confused with the Mediterranean flour moth, another common pest of stored grains.

<span class="mw-page-title-main">Almond moth</span> Species of moth

The almond moth or tropical warehouse moth is a small, stored-product pest. Almond moths infest flour, bran, oats, and other grains, as well as dried fruits. It belongs to the family of snout moths (Pyralidae), and more specifically to the tribe Phycitini of the huge snout moth subfamily Phycitinae. This species may be confused with the related Indian mealmoth or the Mediterranean flour moth, which are also common pantry pests in the same subfamily.

<span class="mw-page-title-main">African armyworm</span> Species of moth

The African armyworm, also called okalombo, kommandowurm, or nutgrass armyworm, is a species of moth of the family Noctuidae. The larvae often exhibit marching behavior when traveling to feeding sites, leading to the common name "armyworm". The caterpillars exhibit density-dependent polyphenism where larvae raised in isolation are green, while those raised in groups are black. These phases are termed solitaria and gregaria, respectively. Gregaria caterpillars are considered very deleterious pests, capable of destroying entire crops in a matter of weeks. The larvae feed on all types of grasses, early stages of cereal crops, sugarcane, and occasionally on coconut. The solitaria caterpillars are less active and undergo much slower development. The species is commonly found in Africa, but can also be seen in Yemen, some Pacific islands, and parts of Australia. African armyworm outbreaks tend to be devastating for farmland and pasture in these areas, with the highest-density outbreaks occurring during the rainy season after periods of prolonged drought. During the long dry seasons ("off-season"), the population densities are very low and no outbreaks are seen.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

<i>Spodoptera litura</i> Species of moth

Spodoptera litura, otherwise known as the tobacco cutworm or cotton leafworm, is a nocturnal moth in the family Noctuidae. S. litura is a serious polyphagous pest in Asia, Oceania, and the Indian subcontinent that was first described by Johan Christian Fabricius in 1775. Its common names reference two of the most frequent host plants of the moth. In total, 87 species of host plants that are infested by S. litura are of economic importance. The species parasitize the plants through the larvae vigorous eating patterns, oftentimes leaving the leaves completely destroyed. The moth's effects are quite disastrous, destroying economically important agricultural crops and decreasing yield in some plants completely. Their potential impact on the many different cultivated crops, and subsequently the local agricultural economy, has led to serious efforts to control the pests.

<i>Pyralis farinalis</i> Species of moth

Pyralis farinalis, the meal moth, is a cosmopolitan moth of the family Pyralidae. Its larvae (caterpillars) are pests of certain stored foods, namely milled plant products.

Home-stored product entomology is the study of insects which infest foodstuffs stored in the home. It deals with the prevention, detection and eradication of the pests.

<i>Mythimna unipuncta</i> Species of moth

Mythimna unipuncta, the true armyworm moth, white-speck moth, common armyworm, or rice armyworm, is a species of moth in the family Noctuidae. The species was first described by Adrian Hardy Haworth in 1809. Mythimna unipuncta occurs in most of North America south of the Arctic, as well as parts of South America, Europe, Africa, and Asia. Although thought to be Neotropical in origin, it has been introduced elsewhere, and is often regarded as an agricultural pest. They are known as armyworms because the caterpillars move in lines as a massive group, like an army, from field to field, damaging crops.

<i>Galleria mellonella</i> Species of moth

Galleria mellonella, the greater wax moth or honeycomb moth, is a moth of the family Pyralidae. G. mellonella is found throughout the world. It is one of two species of wax moths, with the other being the lesser wax moth. G. mellonella eggs are laid in the spring, and they have four life stages. Males are able to generate ultrasonic sound pulses, which, along with pheromones, are used in mating. The larvae of G. mellonella are also often used as a model organism in research.

<i>Ephestia</i> Genus of moths

Ephestia is a genus of small moths belonging to the family Pyralidae. Some species are significant pests of dry plant produce, such as seeds and cereals. Best known among these are probably the cacao moth and the Mediterranean flour moth.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<i>Aglossa cuprina</i> Species of moth

Aglossa cuprina, the grease moth, is a snout moth, family Pyralidae, described by Philipp Christoph Zeller in 1872. The grease moth is closely related to the genus Pyralis, and as a result, is usually associated with the meal moth, Pyralis farinalis.

<span class="mw-page-title-main">Angoumois grain moth</span> Species of moth

The Angoumois grain moth is a species of the Gelechiidae moth family, commonly referred to as the "rice grain moth". It is most abundant in the temperate or tropical climates of India, China, South Africa, Indonesia, Malaysia, Japan, Egypt and Nigeria, with its location of origin being currently unknown. It is most commonly associated as a pest of field and stored cereal grains as they burrow within the kernel grains of crop plants, rendering them unusable for human consumption. By laying eggs between the grains themselves and hatching at a later time, often during the processing, transportation or storage stages, the moth can be transported to households or countries presently free of Angoumois grain moth infestations. Thus, constant protection against the Angoumois grain moth is required for grain up till the time of consumption.

<i>Cadra figulilella</i> Species of moth

Cadra figulilella, the raisin moth, is a moth of the family Pyralidae. The raisin moth is known most commonly as a pest that feeds on dried fruits, such as the raisin and date. It covers a range that includes much of the world, primarily situating itself in areas of California, Florida, the Eastern Mediterranean region, and some parts of Africa, Australia, and South America. The moth prefers to live in a hot, arid climate with little moisture and plentiful harvest for its larvae to feed on. Study of this species is important due to the vast amount of economic damage it causes yearly and worldwide to agriculture crops.

<i>Eldana</i> Genus of moths

Eldana is a genus of moths of the family Pyralidae containing only one species, the African sugar-cane borer, which is commonly found in Equatorial Guinea, Ghana, Mozambique, Sierra Leone and South Africa. Adults have pale brown forewings with two small spots in the centre and light brown hindwings, and they have a wingspan of 35mm. This species is particularly relevant to humans because the larvae are a pest of the Saccharum species as well as several grain crops such as sorghum and maize. Other recorded host plants are cassava, rice and Cyperus species. When attacking these crops, E. saccharina bores into the stems of their host plant, causing severe damage to the crop. This behavior is the origin of the E. saccharrina's common name, the African sugar-cane borer. The African sugar-cane borer is a resilient pest, as it can survive crop burnings. Other methods such as intercropping and parasitic wasps have been employed to prevent further damage to crops.

<i>Cadra calidella</i> Species of moth

Cadra calidella, the dried fruit or date moth, is a species of snout moth in the genus Cadra and commonly mistaken for the species Cadra figulilella. It thrives in warmer conditions and is found primarily in Mediterranean countries, although it can also be found in Central Asia, Kazakhstan, Transcaucasia, Caucasus, and the western part of Russia. It feeds on dried fruits, carobs, nuts and seeds, hence earning its colloquial name. This diet damages the food industry, and it is a common storage pest. Because of this, much research has been done to study ways to limit its reproduction rate and population size. It was first described by Achille Guenée in 1845.

<i>Parapoynx stagnalis</i> Species of moth

Parapoynx stagnalis, the rice case bearer or rice caseworm, is a species of moth in the family Crambidae. It has a wide distribution and is found in India, Sri Lanka, South-East Asia, South Africa, South America, southern Europe, Russia and Australia.

<span class="mw-page-title-main">Moth trap</span> Trap used to catch insects

Moth traps are devices used for capturing moths for scientific research or domestic pest control.

<i>Ostrinia furnacalis</i> Species of moth

Ostrinia furnacalis is a species of moth in the family Crambidae, the grass moths. It was described by Achille Guenée in 1854 and is known by the common name Asian corn borer since this species is found in Asia and feeds mainly on corn crop. The moth is found from China to Australia, including in Java, Sulawesi, the Philippines, Borneo, New Guinea, the Solomon Islands, and Micronesia. The Asian corn borer is part of the species complex, Ostrinia, in which members are difficult to distinguish based on appearance. Other Ostrinia such as O. orientalis, O. scapulalis, O. zealis, and O. zaguliaevi can occur with O. furnacalis, and the taxa can be hard to tell apart.

References

  1. 1 2 3 "Mediterranean Flour Moth (Mill Moth)". University of Minnesota. 29 July 2015.
  2. 1 2 "Butterflies and Moths of North America".
  3. 1 2 3 4 5 6 7 Jacob, T.A.; Cox, P.D. (June 1976). "The influence of temperature and humidity on the life-cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)". Journal of Stored Products Research. 13 (3): 107–118. doi:10.1016/0022-474x(77)90009-1.
  4. 1 2 3 4 5 6 7 8 9 Steve Jacobs; Dennis Calvin (October 1988). "Mediterranean Flour Moth". Penn State College of Agricultural Sciences. Retrieved 2013-09-07.
  5. 1 2 3 4 5 Xu; Wang; He (2008). "Emergence and reproductive rhythms of Ephestia kuehniella (Lepidoptera Pyralidae)". New Zealand Plant Protection. 61: 277–282. doi: 10.30843/nzpp.2008.61.6806 .
  6. Sasaki, Tetsuhiko; Ishikawa, Ishikawa (1999). "Wolbachia Infections and Cytoplasmic Incompatibility in the Almond Moth and the Mediterranean Flour Moth". Zoological Science. 16 (5): 739–744. doi: 10.2108/zsj.16.739 . S2CID   85734865.
  7. Corbet, Sarah (September 1967). "THE INFLUENCE OF EPHESTIA KUEHNIELLA ON THE DEVELOPMENT OF ITS PARASITE NEMERITIS CANESCENS". Journal of Experimental Biology.
  8. Karalius, V.; Buda, V. (November 1995). "MATING DELAY EFFECT ON MOTHS' REPRODUCTION: CORRELATION BETWEEN REPRODUCTION SUCCESS AND CALLING ACTIVITY IN FEMALES EPHESTIA KUEHNIELLA, CYDIA POMONELLA, YPONOMEUTA COGNAGELLUS (LEPIDOPTERA: PYRALIDAE,TORTICIDAE, YPONOMEUTIDAE". Pheromones. 5: 169–190. CiteSeerX   10.1.1.71.6713 .
  9. Karalius, V.; Buda, V. (1995). "MATING DELAY EFFECT ON MOTHS' REPRODUCTION: CORRELATION BETWEEN REPRODUCTION SUCCESS AND CALLING ACTIVITY IN FEMALES EPHESTIA KUEHNIELLA, CYDIA POMONELLA, YPONOMEUTA COGNAGELLUS (LEPIDOPTERA: PYRALIDAE, TORTICIDAE, YPONOMEUTIDAE)". Pheromones. 5: 169–190. CiteSeerX   10.1.1.71.6713 .
  10. 1 2 Bhavanam, Santhi; Trewick, Steven (2017-03-01). "Effects of larval crowding and nutrient limitation on male phenotype, reproductive investment and strategy in Ephestia kuehniella Zeller (Insecta: Lepidoptera)". Journal of Stored Products Research. 71 (Supplement C): 64–71. doi:10.1016/j.jspr.2017.01.004.
  11. "Lebensmittelmotten" (in German).
  12. 1 2 Ayvaz, Abdurrahman; Karabörklü, Salih (2008). "Effect of cold storage and different diets on Ephestia kuehniella Zeller (Lep:Pyralidae)". Journal of Pest Science. 81 (1). doi:10.1007/s10340-008-0192-2. S2CID   19592424.
  13. Hansen, L. S.; Jensen, K.-M. V. (2002). "Effect of Temperature on Parasitism and Host-Feeding of Trichogramma turkestanica (Hymenoptera: Trichogrammatidae) on Ephestia kuehniella (Lepidoptera: Pyralidae)". Journal of Economic Entomology. 95 (1): 50–56. doi:10.1603/0022-0493-95.1.50. PMC   2999447 . PMID   20345297.
  14. Ayvaz, Abdurrahman; Tunçbilek, Aydın Ş. (2006). "Effects of gamma radiation on life stages of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)". Journal of Pest Science. 79 (4): 215–222. doi:10.1007/s10340-006-0137-6. S2CID   39080685.

Further reading

Commons-logo.svg Media related to Ephestia kuehniella at Wikimedia Commons