Amalgam (chemistry)

Last updated
Arquerite, a natural amalgam of silver and mercury Amalgam-200675.jpg
Arquerite, a natural amalgam of silver and mercury

An amalgam is an alloy of mercury with another metal. It may be a liquid, a soft paste or a solid, depending upon the proportion of mercury. These alloys are formed through metallic bonding, [1] with the electrostatic attractive force of the conduction electrons working to bind all the positively charged metal ions together into a crystal lattice structure. [2] Almost all metals can form amalgams with mercury, the notable exceptions being iron, platinum, tungsten, and tantalum. Silver-mercury amalgams are important in dentistry, and gold-mercury amalgam is used in the extraction of gold from ore. Dentistry has used alloys of mercury with metals such as silver, copper, indium, tin and zinc.

Contents

Important amalgams

Zinc amalgam

Zinc amalgam finds use in organic synthesis (e.g., for the Clemmensen reduction). [3] It is the reducing agent in the Jones reductor, used in analytical chemistry. Formerly the zinc plates of dry batteries were amalgamated with a small amount of mercury to prevent deterioration in storage. It is a binary solution (liquid-solid) of mercury and zinc.

Potassium amalgam

For the alkali metals, amalgamation is exothermic, and distinct chemical forms can be identified, such as KHg and KHg2. [4] KHg is a gold-coloured compound with a melting point of 178 °C, and KHg2 a silver-coloured compound with a melting point of 278 °C. These amalgams are very sensitive to air and water, but can be worked with under dry nitrogen. The Hg-Hg distance is around 300  picometres, Hg-K around 358 pm. [4]

Phases K5Hg7 and KHg11 are also known; rubidium, strontium and barium undecamercurides are known and isostructural. Sodium amalgam (NaHg2) has a different structure, with the mercury atoms forming hexagonal layers, and the sodium atoms a linear chain which fits into the holes in the hexagonal layers, but the potassium atom is too large for this structure to work in KHg2.

Sodium amalgam

Sodium amalgam is produced as a byproduct of the chloralkali process and used as an important reducing agent in organic and inorganic chemistry. With water, it decomposes into concentrated sodium hydroxide solution, hydrogen and mercury, which can then return to the chloralkali process anew. If absolutely water-free alcohol is used instead of water, an alkoxide of sodium is produced instead of the alkali solution.

Aluminium amalgam

Aluminium can form an amalgam through a reaction with mercury. Aluminium amalgam may be prepared by either grinding aluminium pellets or wire in mercury, or by allowing aluminium wire or foil to react with a solution of mercuric chloride. This amalgam is used as a reagent to reduce compounds, such as the reduction of imines to amines. The aluminium is the ultimate electron donor, and the mercury serves to mediate the electron transfer. [5] The reaction itself and the waste from it contain mercury, so special safety precautions and disposal methods are needed. As an environmentally friendlier alternative, hydrides or other reducing agents can often be used to accomplish the same synthetic result. Another environmentally friendly alternative is an alloy of aluminium and gallium which similarly renders the aluminium more reactive by preventing it from forming an oxide layer.

Tin amalgam

Tin amalgam was used in the middle of the 19th century as a reflective mirror coating. [6]

Other amalgams

A variety of amalgams are known that are of interest mainly in the research context.

Dental amalgam

An amalgam dental filling Filling.jpg
An amalgam dental filling

Dentistry has used alloys of mercury with metals such as silver, copper, indium, tin and zinc. Amalgam is an "excellent and versatile restorative material" [9] and is used in dentistry because it is inexpensive and relatively easy to use and manipulate during placement. It remains soft for a short time so it can be packed to fill any irregular volume, and then forms a hard compound. Amalgam possesses greater longevity when compared to other direct restorative materials, such as composite. However, this difference has decreased with continual development of composite resins.

Amalgam is typically compared to resin-based composites because many applications are similar and many physical properties and costs are comparable.

Dental amalgam has been studied and is generally considered to be safe for humans, [10] [11] though the validity of some studies and their conclusions have been questioned. [12]

In July 2018 the EU, in consideration of the persistent pollution and environmental toxicity of amalgam's mercury, prohibited amalgam for dental treatment of children under 15 years and of pregnant or breastfeeding women. [13]

Use in mining

Mercury has been used in gold and silver mining because of the convenience and the ease with which mercury and the precious metals will amalgamate. In gold placer mining, in which minute specks of gold are washed from sand or gravel deposits, mercury was often used to separate the gold from other heavy minerals.

After all of the practical metal had been taken out from the ore, the mercury was dispensed down a long copper trough, which formed a thin coating of mercury on the exterior. The waste ore was then transferred down the trough, and gold in the waste amalgamated with the mercury. This coating would then be scraped off and refined by evaporation to get rid of the mercury, leaving behind somewhat high-purity gold.

Mercury amalgamation was first used on silver ores with the development of the patio process in Mexico in 1557. There were also additional amalgamation processes that were created for processing silver ores, including pan amalgamation and the Washoe process.

Gold amalgam

Gold extraction (mining)

Gold amalgam has proved effective where gold fines ("flour gold") would not be extractable from ore using hydro-mechanical methods. Large amounts of mercury were used in placer mining, where deposits composed largely of decomposed granite slurry were separated in long runs of "riffle boxes", with mercury dumped in at the head of the run. The amalgam formed is a heavy dull gray solid mass. The use of mercury in 19th century placer mining in California, now prohibited, has caused extensive pollution problems in riverine and estuarine environments, ongoing to this day. Sometimes substantial slugs of amalgam are found in downstream river and creek bottoms by amateur wet-suited miners seeking gold nuggets with the aid of an engine-powered water vacuum/dredge mounted on a float.

Gold extraction (ore processing)

Interior of the Deadwood Terra Gold Stamp Mill. Crushed ore is washed over mercury-coated copper sheets, and fine gold particles form an amalgam with the mercury. The amalgam was scraped off and the gold then separated from the amalgam by heating and evaporating the mercury, which was then recovered by a condenser for reapplication to the plates. Grabill - Clean Up day at the Deadwood Terra Gold Stamp Mill.jpg
Interior of the Deadwood Terra Gold Stamp Mill. Crushed ore is washed over mercury-coated copper sheets, and fine gold particles form an amalgam with the mercury. The amalgam was scraped off and the gold then separated from the amalgam by heating and evaporating the mercury, which was then recovered by a condenser for reapplication to the plates.

Where stamp mills were used to crush gold-bearing ore to fines, a part of the extraction process involved the use of mercury-wetted copper plates, over which the crushed fines were washed. A periodic scraping and re-mercurizing of the plate resulted in amalgam for further processing.

Gold extraction (retorting)

Amalgam obtained by either process was then heated in a distillation retort, recovering the mercury for reuse and leaving behind the gold. As this released mercury vapors to the atmosphere, the process could induce adverse health effects and long term pollution.

Today, mercury amalgamation has been replaced by other methods to recuperate gold and silver from ore in developed nations. Hazards of mercurial toxic waste have played a major role in the phasing out of the mercury amalgamation processes. Mercury amalgamation is still regularly used by small-scale gold placer miners (often illegally), particularly in developing countries.

Amalgam probe

The amalgam probe Amalgamprobe.jpg
The amalgam probe

Mercury salts are, compared to mercury metal and amalgams, highly toxic due to their solubility in water. The presence of these salts in water can be detected with a probe that uses the readiness of mercury ions to form an amalgam with copper. A nitric acid solution of salts under investigation is applied to a piece of copper foil, and any mercury ions present will leave spots of silvery-coloured amalgam. Silver ions leave similar spots but are easily washed away, making this a means of distinguishing silver from mercury.

The redox reaction involved where mercury oxidizes the copper is:

Hg2+ + Cu → Hg + Cu2+.

See also

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Most alloys are metallic and show good electrical conductivity, ductility, opacity, and luster, and may have properties that differ from those of the pure elements such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Silver</span> Chemical element with atomic number 47 (Ag)

Silver is a chemical element; it has symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. Silver is found in the Earth's crust in the pure, free elemental form, as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining.

Gold cyanidation is a hydrometallurgical technique for extracting gold from low-grade ore by converting the gold to a water-soluble coordination complex. It is the most commonly used leaching process for gold extraction. Cyanidation is also widely used in the extraction of silver, usually after froth flotation.

<span class="mw-page-title-main">Mercury(II) chloride</span> Chemical compound known as corrosive sublimate

Mercury(II) chloride (or mercury bichloride, mercury dichloride), historically also known as sulema or corrosive sublimate, is the inorganic chemical compound of mercury and chlorine with the formula HgCl2, used as a laboratory reagent. It is a white crystalline solid and a molecular compound that is very toxic to humans. Once used as a treatment for syphilis, it is no longer used for medicinal purposes because of mercury toxicity and the availability of superior treatments.

<span class="mw-page-title-main">Group 12 element</span> Group of chemical elements

Group 12, by modern IUPAC numbering, is a group of chemical elements in the periodic table. It includes zinc (Zn), cadmium (Cd), mercury (Hg), and copernicium (Cn). Formerly this group was named IIB by CAS and old IUPAC system.

Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose.

The chloralkali process is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide, which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. In 2022, this had increased to about 83 million tonnes. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.

Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.

Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Gold extraction</span> Process of extracting gold from ore

Gold extraction is the extraction of gold from dilute ores using a combination of chemical processes. Gold mining produces about 3600 tons annually, and another 300 tons is produced from recycling.

<span class="mw-page-title-main">Patio process</span> Metallurgical process: extraction of silver by amalgamation

The patio process is a process for extracting silver from ore. Smelting, or refining, is most often necessary because silver is only infrequently found as a native element like some metals nobler than the redox couple 2 H+ + 2 eH
2
(gold, mercury, ...). Instead, it is made up of a larger ore body. Thus, smelting, or refining, is necessary to reduce the compound containing the Ag+ cation into metallic Ag and to remove other byproducts to get at pure silver. The process, which uses mercury amalgamation to recover silver from ore, was first used at scale by Bartolomé de Medina in Pachuca, Mexico, in 1554. It replaced smelting as the primary method of extracting silver from ore at Spanish colonies in the Americas. Although some knowledge of amalgamation techniques were likely known since the classical era, it was in the New World that it was first used on a large industrial scale. Other amalgamation processes were later developed, importantly the pan amalgamation process, and its variant, the Washoe process. The silver separation process generally differed from gold parting and gold extraction, although amalgamation with mercury is also sometimes used to extract gold. While gold was often found in the Americas as a native metal or alloy, silver was often found as a compound such as silver chloride and silver sulfide, and therefore required mercury amalgamation for refinement.

Aluminium can form an amalgam in solution with mercury. Aluminium amalgam may be prepared by either grinding aluminium pellets or wire in mercury, or by allowing aluminium wire to react with a solution of mercury(II) chloride in water.

<span class="mw-page-title-main">Organomercury chemistry</span> Group of chemical compounds containing mercury

Organomercury chemistry refers to the study of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ethylmercury(II) cation, C2H5Hg+; dimethylmercury, (CH3)2Hg, diethylmercury and merbromin ("Mercurochrome"). Thiomersal is used as a preservative for vaccines and intravenous drugs.

<span class="mw-page-title-main">Silver compounds</span> Chemical compounds containing silver

Silver is a relatively unreactive metal, although it can form several compounds. The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO3); +2 (highly oxidising; for example, silver(II) fluoride, AgF2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III), KAgF4). The +3 state requires very strong oxidising agents to attain, such as fluorine or peroxodisulfate, and some silver(III) compounds react with atmospheric moisture and attack glass. Indeed, silver(III) fluoride is usually obtained by reacting silver or silver monofluoride with the strongest known oxidizing agent, krypton difluoride.

<span class="mw-page-title-main">Native metal</span> Form of metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.

<span class="mw-page-title-main">Silver mining</span> Extraction silver from the ground

Silver mining is the extraction of silver by mining. Silver is a precious metal and holds high economic value. Because silver is often found in intimate combination with other metals, its extraction requires the use of complex technologies. In 2008, approximately 25,900 metric tons of silver were consumed worldwide, most of which came from mining. Silver mining has a variety of effects on the environment, humans, and animals.

<span class="mw-page-title-main">Amalgam (dentistry)</span> Material used in dentistry for direct restorative procedures in the tooth

In dentistry, amalgam is an alloy of mercury used to fill teeth cavities. It is made by mixing a combination of liquid mercury and particles of solid metals such as silver, copper or tin. The amalgam is mixed by the dentist just before use. It remains soft for a short while after mixing, which facilitates it being snugly packed into the cavity and shaped before it sets hard.

<span class="mw-page-title-main">Mercury (element)</span> Chemical element with atomic number 80 (Hg)

Mercury is a chemical element; it has symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum from the Greek words hydor'water' and argyros'silver', from which its chemical symbol is derived. A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.

Metals in medicine are used in organic systems for diagnostic and treatment purposes. Inorganic elements are also essential for organic life as cofactors in enzymes called metalloproteins. When metals are under or over-abundant in the body, equilibrium must be returned to its natural state via interventional and natural methods.

References

  1. Callister, W. D. "Materials Science and Engineering: An Introduction" 2007, 7th edition, John Wiley and Sons, Inc. New York, Section 4.3 and Chapter 9.
  2. "Mercury Amalgamation".
  3. Ham, Peter "Zinc amalgam" in e-EROS Encyclopedia of Reagents for Organic Synthesis (2001). doi : 10.1002/047084289X.rz003
  4. 1 2 E J Duwell; N C Baenziger (1955). "The Crystal Structures of KHg and KHg2". Acta Crystallogr. 8 (11): 705–710. Bibcode:1955AcCry...8..705D. doi: 10.1107/S0365110X55002168 .
  5. Emmanuil I. Troyansky and Meghan Baker "Aluminum Amalgam" in e-EROS Encyclopedia of Reagents for Organic Synthesis 2016, doi : 10.1002/047084289X.ra076.pub2
  6. "Die Sendung mit der Maus, Sachgeschichte vom Spiegel" (in German). Archived from the original on 17 April 2009. Retrieved 2009-04-24.
  7. "Mercury Amalgamation". mine-engineer.com. Retrieved 8 April 2018.
  8. webmineral.com/data/Leadamalgam.shtml
  9. Bharti, Ramesh; Wadhwani, Kulvinder Kaur; Tikku, Aseem Prakash; Chandra, Anil (2010). "Dental amalgam: An update". Journal of Conservative Dentistry. 13 (4): 204–208. doi: 10.4103/0972-0707.73380 . ISSN   0972-0707. PMC   3010024 . PMID   21217947.
  10. "The "Mercury Toxicity" Scam:: How Anti-Amalgamists Swindle People". www.quackwatch.com. Archived from the original on 2018-11-15. Retrieved 2017-09-12.
  11. "Statement on Dental Amalgam". www.ada.org.
  12. Mutter, Joachim (13 January 2011). "Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission". Journal of Occupational Medicine and Toxicology. 6 (1): 2. doi: 10.1186/1745-6673-6-2 . PMC   3025977 . PMID   21232090.
  13. "Mercury Regulation EU". www.europa.eu. 25 September 2023.

Further reading