American system of manufacturing

Last updated

The American system of manufacturing was a set of manufacturing methods that evolved in the 19th century. [1] The two notable features were the extensive use of interchangeable parts and mechanization for production, which resulted in more efficient use of labor compared to hand methods. The system was also known as armory practice because it was first fully developed in armories, namely, the United States Armories at Springfield in Massachusetts and Harpers Ferry in Virginia (later West Virginia), [2] inside contractors to supply the United States Armed Forces, and various private armories. The name "American system" came not from any aspect of the system that is unique to the American national character, but simply from the fact that for a time in the 19th century it was strongly associated with the American companies who first successfully implemented it, and how their methods contrasted (at that time) with those of British and continental European companies. In the 1850s, the "American system" was contrasted to the British factory system which had evolved over the previous century. Within a few decades, manufacturing technology had evolved further, and the ideas behind the "American" system were in use worldwide. Therefore, in manufacturing today, which is global in the scope of its methods, there is no longer any such distinction.

Contents

The American system involved semi-skilled labor using machine tools and jigs to make standardized, identical, interchangeable parts, manufactured to a tolerance, which could be assembled with a minimum of time and skill, requiring little to no fitting.

Since the parts are interchangeable, it was also possible to separate manufacture from assembly and repair—an example of the division of labor. This meant that all three functions could be carried out by semi-skilled labor: manufacture in smaller factories up the supply chain, assembly on an assembly line in a main factory, and repair in small specialized shops or in the field. The result is that more things could be made, more cheaply, and with higher quality, and those things also could be distributed further, and lasted longer, because repairs were also easier and cheaper. In the case of each function, the system of interchangeable parts typically involved substituting specialized machinery to replace hand tools.

Interchangeability of parts was finally achieved by combining a number of innovations and improvements in machining operations and machine tools, which were developed primarily for making textile machinery. These innovations included the invention of new machine tools and jigs (in both cases, for guiding the cutting tool), fixtures for holding the work in the proper position, and blocks and gauges to check the accuracy of the finished parts. [2]

Use of machinery

English machine tool manufacturer Joseph Whitworth was appointed as a British commissioner for the New York International Exhibition. Accompanied by another British commissioner, he traveled around several states visiting various manufacturers, and as a result published a highly influential report on American manufacturing, from which he is quoted:

The laboring classes are comparatively few in number, but this is counterbalanced by, and indeed, may be one of the causes of the eagerness by which they call in the use of machinery in almost every department of industry. Wherever it can be applied as a substitute for manual labor, it is universally and willingly resorted to ... It is this condition of the labor market, and this eager resort to machinery wherever it can be applied, to which, under the guidance of superior education and intelligence, the remarkable prosperity of the United States is due. [3]

Joseph Whitworth, 1854

Other characteristics

The American system contributed to efficiency gains through division of labor. Division of labor helped manufacturing transition from small artisan's shops to early factories. Key pieces of evidence supporting efficiency gains include increase in firm size, evidence of returns to scale, and an increase in non-specialized labor. The need for firms to train uneducated people to perform only one thing in the productivity chain allowed for the use of non-specialized labor. Women and children were employed more frequently within larger firms, especially those producing furniture and clothing.[ citation needed ].

History

In the late 18th century, French General Jean Baptiste Vaquette de Gribeauval suggested that muskets could be manufactured faster and more economically if they were made from interchangeable parts. This system would also make field repairs easier to carry out under battle conditions. He provided patronage to Honoré Blanc, who attempted to implement the Système Gribeauval, but never succeeded. [2] Until then, under the British factory system, skilled machinists were required to produce parts from a design. But however skilled the machinist, parts were never identical, and each part had to be manufactured separately to fit its counterpart—almost always by one person who produced each completed item from start to finish.

Mass production using interchangeable parts was first achieved in 1803 by Marc Isambard Brunel in cooperation with Henry Maudslay, and Simon Goodrich, under the management of (with contributions by) Brigadier-General Sir Samuel Bentham, the Inspector General of Naval Works at Portsmouth Block Mills at Portsmouth Dockyard, for the British Royal Navy during the Napoleonic War. By 1808 annual production had reached 130,000 sailing blocks. [4] [5] [6] [7] [ page needed ] [8] [ page needed ] [9] [ page needed ] [10] [ page needed ] [11] [ page needed ] [12] [13] This method of working did not catch on in general manufacturing in Britain for many decades, and when it did it was imported from America, becoming known as the American System of Manufacturing, even though it originated in England.

The Lowell system is also related to the American system during this time. It emphasized procuring, training, and providing housing and other living necessities for the workforce, as well as using semi-automated machines in a centralized factory building or complex.

Gribeauval's idea was conveyed to the US by two routes. First, Blanc's friend Thomas Jefferson championed it, sending copies of Blanc's memoirs and papers describing his work to Secretary of War Henry Knox. Second, artillery officer Louis de Tousard (who had served with Lafayette) was an enthusiast of Gribeauval's ideas. Tousard wrote two influential documents after the American Revolution; one was used as the blueprint for West Point, and the other became the officer's training manual. [2]

The War Department, which included officers trained at West Point on Tousard's manual, established the armories at Springfield and Harper's Ferry and tasked them with solving the problem of interchangeability. The task was finally accomplished in the 1820s. Historian David A. Hounshell believes that this was done by Captain John H. Hall, an inside contractor at Harper's Ferry. [2] In a letter dated 1822 Hall makes the claim he had achieved interchangeability in that year. [14] But historian Diana Muir argues that it is more probable that it was Simeon North, a Connecticut arms contractor manufacturing guns for the US Army. North, not Hall, was the inventor of the crucial milling machine in 1816, and had an advantage over Hall in that he worked closely with the first industry that mass-produced complex machines from mass-produced interchangeable parts, the Connecticut clock-making industry. [15] [ page needed ] By 1815 the idea of interchangeability was well established in the US government system of procurement; Congressional contracts stipulated this quality in muskets, rifles and pistols ordered after that date. [16] Interchangeability of firearms parts at the U.S. armories was found to have been in use for a number of years by the time of the 1853 British Parliamentary Commissions Committee on Small Arms inquiry. [2]

The "American method" was reintroduced to the UK in the 1850s, when Colt executed on order on naval revolvers in Pimlico, and strikes of London and Birmingham gunmakers during the war made the War Office realize the usefulness of being able to employ low-skilled workers, so milling machines were bought and installed at the Royal Small Arms Factory by 1857. [17]

A critical factor in making interchangeable metal parts was the invention of several machine tools, such as the slide rest lathe, screw cutting lathe, turret lathe, milling machine and metal planer. One of the most important and versatile of these machine tools was David Wilkinson's lathe, for which he received a $10,000 award from the government of the United States. [18] [ page needed ]

Eli Whitney is generally credited with the idea and the practical application, but both are incorrect attributions. Based on his reputation as the inventor of the cotton gin, the US government gave him a contract in 1798 for 10,000 muskets to be produced within two years. It actually took eight years to deliver the order, as Whitney perfected and developed new techniques and machines. In a letter to Treasury Secretary Oliver Wolcott apologizing for the delays, Whitney wrote:

One of my primary objectives it to form tools so the tools themselves shall fashion the work and give to every part its just proportion – which when once accomplished, will give expedition, uniformity, and exactness to the whole... In short, the tools which I contemplate are similar to engraving on a copper plate from which may be taken a great number of impressions, perfectly alike. [14] [ page needed ]

Whitney did use machinery; however, there is no evidence that he produced any new type of metalworking machinery. [14] After completing the initial contract, Whitney went on to produce another 15,000 muskets within the following two years. Whitney never actually expressed any interest in interchangeability until 1800, when Treasury Secretary Wolcott exposed him to the memoirs of Blanc, [2] but he spent far more time and energy promoting the idea than developing it.

In order to spread knowledge of manufacturing techniques, the War Department made contractors open their shops to other manufacturers and competitors. The armories also openly shared manufacturing techniques with private industry. [18] Additionally, the idea migrated from the armories to industry as machinists trained in the armory system were hired by other manufacturers. Skilled engineers and machinists thus influenced American clockmakers and sewing machine manufacturers Wilcox and Gibbs and Wheeler and Wilson, who used interchangeable parts before 1860. [2] [19] Late to adopt the interchangeable system were Singer Corporation sewing machine (1870s), reaper manufacturer McCormick Harvesting Machine Company (1870s–80s) [2] and several large steam engine manufacturers such as Corliss (mid-1880s) [20] as well as locomotive makers. Large scale of production of bicycles in the 1880s used the interchangeable system. [2]

The idea would also help lead to the American "Golden Age" of manufacturing when Ransom E. Olds mass-produced the Curved Dash automobile starting in 1901. Henry Ford did not start mass producing cars until 1913. Mastering true interchangeability on the assembly line, the Ford plant produced standard model cars. These efficient production strategies allowed these automobiles to be affordable for the middle class.

Pre–Industrial Revolution

The idea of interchangeable parts and the separate assembly line was not new, though it was little used. The idea was first developed in East Asia during the Warring States period and later the Qin Dynasty over 2200 years ago – bronze crossbow triggers and locking mechanisms were mass-produced and made to be interchangeable. Venice during the late Middle Ages had ships that were produced using pre-manufactured parts, assembly lines, and mass production. The Venetian Arsenal apparently produced nearly one ship every day, in what was effectively the world's first factory.

See also

Related Research Articles

<span class="mw-page-title-main">Eli Whitney</span> American inventor (1765–1825)

Eli Whitney Jr. was an American inventor, widely known for inventing the cotton gin in 1793, one of the key inventions of the Industrial Revolution that shaped the economy of the Antebellum South.

<span class="mw-page-title-main">Mass production</span> High volume production of standardized products

Mass production, also known as flow production, series production, series manufacture, or continuous production, is the production of substantial amounts of standardized products in a constant flow, including and especially on assembly lines. Together with job production and batch production, it is one of the three main production methods.

<span class="mw-page-title-main">Henry Maudslay</span> English inventor and machine tool innovator (1771–1831)

Henry Maudslay was an English machine tool innovator, tool and die maker, and inventor. He is considered a founding father of machine tool technology. His inventions were an important foundation for the Industrial Revolution.

<span class="mw-page-title-main">Machine tool</span> Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

<span class="mw-page-title-main">Machinist</span> Technician

A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.

The American system of watch manufacturing is a set of manufacturing techniques and best-practices to be used in the manufacture of watches and timepieces. It is derived from the American system of manufacturing techniques, a set of general techniques and guidelines for manufacturing that was developed in the 19th century. The system calls for using interchangeable parts, which is made possible by a strict system of organization, the extensive use of the machine shop, and quality control systems utilizing gauges to ensure precise and uniform dimensions. It was developed by Aaron Lufkin Dennison, a watch repairman who was inspired by the manufacturing techniques of the United States Armory at Springfield, Massachusetts, which manufactured identical parts, allowing rapid assembly of the final products. He proposed using similar techniques for the manufacture of watches. Before the American system of watch manufacturing was developed, watchmaking was primarily a European business. It involved making certain parts under the roof of a factory while obtaining other parts from piece workers who used their own cottages as workshops.

<span class="mw-page-title-main">Portsmouth Block Mills</span>

The Portsmouth Block Mills form part of the Portsmouth Dockyard at Portsmouth, Hampshire, England, and were built during the Napoleonic Wars to supply the British Royal Navy with pulley blocks. They started the age of mass-production using all-metal machine tools, and are regarded as one of the seminal buildings of the British Industrial Revolution. They are also the site of the first stationary steam engines used by the Admiralty.

<span class="mw-page-title-main">Interchangeable parts</span> Components that are identical for practical purposes

Interchangeable parts are parts that are identical for practical purposes. They are made to specifications that ensure that they are so nearly identical that they will fit into any assembly of the same type. One such part can freely replace another, without any custom fitting, such as filing. This interchangeability allows easy assembly of new devices, and easier repair of existing devices, while minimizing both the time and skill required of the person doing the assembly or repair.

<span class="mw-page-title-main">Factory system</span> Method of manufacturing using machinery and division of labor

The factory system is a method of manufacturing whereby workers and manufacturing equipment are centralized in a factory, the work is supervised and structured through a division of labor, and the manufacturing process is mechanized. Because of the high capital cost of machinery and factory buildings, factories are typically privately owned by wealthy individuals or corporations who employ the operative labor. Use of machinery with the division of labor reduced the required skill-level of workers and also increased the output per worker.

<span class="mw-page-title-main">Eli Whitney Museum</span> Museum in Hamden, Connecticut, USA

The Eli Whitney Museum, in Hamden, Connecticut, is an experimental learning workshop for students, teachers, and families. The museum's main building is located on a portion of the Eli Whitney Gun Factory site, a gun factory erected by Eli Whitney in 1798. The museum focuses on teaching experiments that are the roots of design and invention, featuring hands-on building projects and exhibits on Whitney and A. C. Gilbert.

<span class="mw-page-title-main">Turret lathe</span> Metalworking lathe

A turret lathe is a form of metalworking lathe that is used for repetitive production of duplicate parts, which by the nature of their cutting process are usually interchangeable. It evolved from earlier lathes with the addition of the turret, which is an indexable toolholder that allows multiple cutting operations to be performed, each with a different cutting tool, in easy, rapid succession, with no need for the operator to perform set-up tasks in between or to control the toolpath. The latter is due to the toolpath's being controlled by the machine, either in jig-like fashion, via the mechanical limits placed on it by the turret's slide and stops, or via digitally-directed servomechanisms for computer numerical control lathes.

<span class="mw-page-title-main">Tool and die maker</span> Class of machinist in manufacturing

Tool and die makers are highly skilled crafters working in the manufacturing industries. Tool and die makers work primarily in toolroom environments—sometimes literally in one room but more often in an environment with flexible, semipermeable boundaries from production work. They are skilled artisans (craftspeople) who typically learn their trade through a combination of academic coursework and with substantial period of on-the-job training that is functionally an apprenticeship. They make jigs, fixtures, dies, molds, machine tools, cutting tools, gauges, and other tools used in manufacturing processes.

<span class="mw-page-title-main">American Precision Museum</span> United States historic place

The American Precision Museum is located in the renovated 1846 Robbins & Lawrence factory on South Main Street in Windsor, Vermont. The building is said to be the first U.S. factory at which precision interchangeable parts were made, giving birth to the precision machine tool industry. In recognition of this history, the building was declared a National Historic Landmark in 1966. In 1987, the building was recognized by the American Society of Mechanical Engineers as an International Heritage Site, and the collection was recognized as an International Heritage Collection. For each of these designations, the armory was considered a site where pivotal events occurred in the history of American industry, as well as a place that lends itself to comprehensive interpretation of that history.

<span class="mw-page-title-main">Louis de Tousard</span>

Louis de Tousard (1749–1817) was a French artillerist who served in the American Continental Army under La Fayette, and later was given a US commission. Tousard wrote two very influential books: one was a proposal for a school for officers that became the blueprint for West Point, and the other was a manual for artillery officers that became standard in the young army.

The evolution of U.S. manufacturing and the American industrial revolution are clearly reflected in the history of Connecticut. Between the birth of the U.S. patent system in 1790 and 1930, Connecticut had more patents issued per capita than any other state; in the 19th century, when one in three thousand people were issued a U.S. patent, one in 700-1000 Connecticut inventors were issued patents. Connecticut's first recorded invention granted a U.S. patent was a lapidary machine, by Abel Buell of Killingworth, in 1765.

Honoré Blanc (1736–1801) was a French gunsmith and a pioneer of the use of interchangeable parts. He was born in Avignon in 1736 and apprenticed to the gun-making trade at the age of twelve. His career spanned the decades from circa 1750 to 1801, a time period that included the reigns of Louis XV and Louis XVI, the American Revolution, the French Revolution, and the French First Republic.

Indexing in reference to motion is moving into a new position or location quickly and easily but also precisely. When indexing a machine part, its new location is known to within a few hundredths of a millimeter, or often even to within a few thousandths of a millimeter, despite the fact that no elaborate measuring or layout was needed to establish that location. In reference to multi-edge cutting inserts, indexing is the process of exposing a new cutting edge for use. Indexing is a necessary kind of motion in many areas of mechanical engineering and machining. An object that indexes, or can be indexed, is said to be indexable.

<span class="mw-page-title-main">Automatic lathe</span>

In metalworking and woodworking, an automatic lathe is a lathe with an automatically controlled cutting process. Automatic lathes were first developed in the 1870s and were mechanically controlled. From the advent of NC and CNC in the 1950s, the term automatic lathe has generally been used for only mechanically controlled lathes, although some manufacturers market Swiss-type CNC lathes as 'automatic'.

<span class="mw-page-title-main">Milling (machining)</span> Removal of material from a workpiece using rotating tools

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

<span class="mw-page-title-main">Machine factory</span> Type of company

A machine factory is a company, that produces machines. These companies traditionally belong to the heavy industry sector in comparison to a more consumer oriented and less capital intensive light industry. Today many companies make more sophisticated smaller machines, and they belong to the light industry. The economic sector of machine factories is called the machine industry.

References

  1. Goodfriend, Marvin; McDermott, John (2021-02-24). "The American System of economic growth". Journal of Economic Growth. 26 (1): 31–75. doi:10.1007/s10887-021-09186-x. ISSN   1573-7020. PMC   7902180 . PMID   33642936.
  2. 1 2 3 4 5 6 7 8 9 10 Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN   978-0-8018-2975-8, LCCN   83016269, OCLC   1104810110
  3. Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN   16011753 . Reprinted by McGraw-Hill, New York and London, 1926 (LCCN   27-24075); and by Lindsay Publications, Inc., Bradley, Illinois ( ISBN   978-0-917914-73-7).. Report of the British Commissioners to the New York Industrial Exhibition, London, 1854{{citation}}: CS1 maint: location missing publisher (link).
  4. Enlightenment & measurement, UK: Making the modern world, archived from the original on 2017-04-05, retrieved 2010-06-23.
  5. Portsmouth dockyard, UK, archived from the original on 2020-02-26, retrieved 2010-06-23.
  6. "Block", Collections (exhiblet), UK: Science museum.
  7. Gilbert, KR (1965), The Portsmouth Block-making Machinery, London{{citation}}: CS1 maint: location missing publisher (link).
  8. Cooper, CC (1982), "The Production Line at Portsmouth Block Mill", Industrial Archaeology Review, VI: 28–44.
  9. Cooper, CC (1984), "The Portsmouth System of Manufacture", Technology and Culture, 25 (2): 182–225, doi:10.2307/3104712, JSTOR   3104712, S2CID   111936139 .
  10. Coad, Jonathan (1989), The Royal Dockyards 1690–1850, Aldershot{{citation}}: CS1 maint: location missing publisher (link).
  11. Coad, Jonathan (2005), The Portsmouth Block Mills : Bentham, Brunel and the start of the Royal Navy's Industrial Revolution, English Heritage, ISBN   1-873592-87-6 .
  12. Wilkin, Susan (1999), The application of emerging new technologies by Portsmouth Dockyard, 1790–1815 (PhD Thesis), The Open University (copies available from the British Thesis service of the British Library).
  13. Cantrell, J; Cookson, G, eds. (2002), Henry Maudslay and the Pioneers of the Machine Age, Stroud{{citation}}: CS1 maint: location missing publisher (link).
  14. 1 2 3 Cowan, Ruth Schwartz (1997). A Social History of American Technology. New York: Oxford University Press. pp. 7–8. ISBN   0-19-504606-4.
  15. Muir, Diana, Reflections in Bullough's Pond , University Press of New England.
  16. Burke, James (1995) [1978], Connections, Little, Brown & Co, p. 151, ISBN   0-316-11672-6 .
  17. Britain), Institution of Civil Engineers (Great (1893). Minutes of Proceedings of the Institution of Civil Engineers. The Institution.
  18. 1 2 Thompson, Ross (2009). Structures of Change in the Mechanical Age: Technological Invention in the United States 1790–1865 . Baltimore, MD: The Johns Hopkins University Press. ISBN   978-0-8018-9141-0.
  19. Thomson, Ross (1989). The Path to Mechanized Shoe Production in the United States . University of North Carolina Press. ISBN   978-0-80781867-1.
  20. Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930. Vol. 2: Steam Power. Charlottesville: University Press of Virginia.