Atta sexdens

Last updated

Atta sexdens
Atta.sexdens.jpg
A. sexdens soldier caste workers
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Myrmicinae
Genus: Atta
Species:
A. sexdens
Binomial name
Atta sexdens

Atta sexdens is a species of leafcutter ant belonging to the tribe Attini, native to America, from the southern United States (Texas) to northern Argentina. [2] They are absent from Chile. They cut leaves to provide a substrate for the fungus farms which are their principal source of food. Their societies are among the most complex found in social insects. A. sexdens is an ecologically important species, but also an agricultural pest. Other Atta species, such as Atta texana , Atta cephalotes and others, have similar behavior and ecology.[ citation needed ]

Contents

Description

Colony architecture

A. sexdens colonies are primarily subterranean with a mound of excavated material on the surface. The diameter of the colony may reach 10 m with a depth of 6 m. The colonies contain up to 2000 chambers with a combined volume of more than 20 m3. The two basic types of chambers are fungus farms and waste chambers. The farms contain the fungal culture which sustains the colony and hosts larvae and pupae. The waste chambers are located at the rim of the colony and are significantly larger. They are used to dispose used fungal culture and dead ants. A mature colony contains 5–8 million workers. [3] The colony often forms the centerpiece of a large jungle clearing. At the top of the mound are structures resembling sand castles surrounding hundreds of openings to the colony. Positioning the openings on top of these structures minimises the amount of rainwater flowing into the colony. The openings also have an important role in air conditioning. As the ant activity and fungal metabolism heat up the colony, hot air rises through the central passageways. Simultaneously, fresh air is drawn in from the openings at the rim of the colony.[ citation needed ]

Anatomy

A. sexdens follows the basic body plan of ants fairly closely. They have sharp spikes or hooks rising from their heads and midsections to deter predators. Another distinguishing feature is a relatively large, two-lobed head. Its purpose is to accommodate the large muscles moving the well-developed mandibles.[ citation needed ]

In addition to the queen, the colony contains four castes of sterile female workers, and seasonally some winged virgin queens and males: [4]

Considerable variation in size occurs within the castes, some of which may be related to the division of labour. Some researchers separate seven castes, while others dismiss the idea of caste altogether. The division of labour also depends on the age of the worker. Foraging expeditions are hazardous, so are handled by older, thus more expendable, members of the caste. [5]

Development

A. sexdens, like all ants, has four stages of development: egg, larva, pupa, and adult. [6] Their developmental larval stages are observed associated with fungal hyphae, and possess unique morphological features, compared to other ants. [6] They are, like all hymenopterans, haplodiploid, meaning males are haploid (one of each chromosome) and females, including workers, are diploid (a pair of each chromosome). Sex is determined by the type of egg laid. Unfertilized eggs will turn out to be males, which are strictly used for mating and are short-lived. Fertilized eggs produce females. The caste of the resulting adult depends on environmental cues.[ citation needed ]

Three to four weeks after being laid, the egg hatches and a larva emerges. In Atta ants, the larvae are fed by secretions from gardener-nurse ants and trophic eggs (unfertilized eggs used as food). The larvae, after an additional three to four weeks pupate. Their pupae are cocoonless, as are all of the subfamily Myrmicinae. After three to four more weeks, the pupae hatch into adult workers.[ citation needed ]

A. sexdens larvae grow embedded in the fungal garden. Despite being surrounded by food, they are incapable of feeding themselves. Their adult sisters constantly feed and clean them. This is not a primitive feature. On the contrary, only the most advanced ant societies can expend such lavish care to their offspring as required by Atta larvae.[ citation needed ]

All female eggs are identical when laid. The caste of the resulting worker is determined by the conditions, which are in turn regulated by adult workers. The most important factor is the quantity of food. The largest amount of food results in virgin queens, while slightly less food creates soldiers. A shortage of one caste causes the workers to produce more ants of that caste. A drastic reduction in the work force may cause the colony to revert to the caste structure of a young colony, which does not have soldiers.[ citation needed ]

Behavior

Foraging

A. sexdens workers forage leaves up to a range of 60 m from the colony. The scouting workers leave behind a trail of pheromones after they discover a source of suitable plant material. Other workers follow this trail to the leaves. They cut the plant material to pieces suitable for an individual ant to carry back to the colony.[ citation needed ]

Smaller workers sometimes ride on the leaf pieces while the foragers carry them. The purpose of this behavior is not known for certain, but may be to protect the exposed foragers from attacks by parasitic insects. These insects include flies of the family Phoridae which lay their eggs on foragers. The resulting larvae eat the ants alive.[ citation needed ]

Fungus cultivation

A. sexdens, like all leafcutter ants, is mycophagic. They live in a symbiotic relationship with a fungus belonging to the subphylum Basidiomycota. Leaves and other soft plant material brought into the nest by the foragers is chewed into a pulp and fertilized with faeces. A small piece of fungus is placed on this substrate. The gardener-nurse caste takes care of the cultivation, transplanting fungus onto fresh substrate and weeding out wrong species of fungus, such as a parasitic Escovopsis , which sometimes can contaminate nests. They also use secretions from their salivary glands and help form antibiotic-producing Streptomyces bacteria to keep their fungal gardens a strict monoculture. [7]

The gardener-nurses also cut pieces of mycelium for the other castes to eat. In addition to the fungus, the A. sexdens adults feed on plant sap. They are the only source of nutrition for the ants, apart from the trophic eggs laid by the queen when the colony is young.[ citation needed ]

The identity of the fungus remains a mystery. It is known that they are a species of the basidiomycete family Lepiotaceae. Some researchers believe all fungus-growing ants cultivate just one species, Leucocoprinus gongylophorus. The fungus produces special structures, called gongylidia, which have evolved to be eaten by ants. [8]

Cleaning

A. sexdens workers spend a considerable time cleaning each other and the queen. They also spread antibiotic secretions from their metapleural glands on their bodies. Dirt collected by licking is stored in the workers' infrabuccal cavities, which are special recesses in their mouths. The purpose of these activities is to avoid infections, especially by parasitic fungi. Several fungus species, such as Cordyceps , specially infect and kill ants.[ citation needed ]

All waste in the nest, including infrabuccal pellets, spent substrate from the gardens, and dead ants are carried in the waste chambers to avoid contamination. Feces, however, are not carried away, but used to fertilise the fungal gardens. The waste chambers are larger than the human head and located at the rim of the colony. There, the waste can decompose without endangering the ants. Due to the high concentration of various nutrients in the decomposing waste, a thick net of plant roots usually permeates the compost.[ citation needed ]

Reproduction

From late October to mid-December, the A. sexdens colonies produce winged virgin queens and males. Before the nuptial flight, young queens visit the colony's fungal gardens and place a small piece of fungal mycelium in their infrabuccal cavities. During their nuptial flights, the queens mate with several males, which die shortly after. The queen retains the sperm in a special organ for the rest of her life. [9]

It is estimated that each queen is inseminated by 3-8 males and that the number of fathers per colony is between 1 and 5. [10] [11]

The mated queen lands on the ground and tears off her now-unnecessary wings. Then she digs a vertical tunnel to a depth of about 30 cm. At the end of the tunnel, she excavates a small chamber. The queen then starts a fungal garden using the piece brought from her birth colony. Usually, the garden is fertilized only with feces, but sometimes it is necessary for the queen to forage a small quantity of plant material. The queen also lays a few eggs. [9]

The queen then tends to the fungal garden and the developing larvae, feeding them fungus and trophic eggs. The queen herself eats nothing during this period, sustaining herself on fat deposits and her shrinking flight muscles. After the first brood of workers is ready, they take over the running of the fledgling colony and the queen becomes strictly an egg-laying machine. This process takes 40–60 days. [9]

At first, the colony grows slowly, but after two to three years, the growth becomes faster. One possible reason for this is, before the colony is established enough to sustain any large soldier-caste workers, it is useful to remain unnoticed. Soldiers usually appear when the colony has a population of about 100,000. After the number of workers reaches 5–8 million, the colony stops expanding and diverts resources into producing queens and males. [9]

The virgin queens are very rarely successful. Assuming the number of colonies in an area remains constant over time, on average only one queen among the many thousands sent out by a colony successfully founds a new one. However, a mature colony of several million workers faces very few dangers. No known predator, except the mostly subterranean army ant Nomamyrmex esenbeckii, actively attacks the nests, and even other highly aggressive army ants show a healthy respect for an A. sexdens colony. If spared from floods and human activity, the colony is usually destroyed only when the queen dies of old age, giving a successful colony a lifespan of 10–20 years. In that time, the colony will have sent out numerous males and virgin queens to found new colonies.[ citation needed ]

Significance

Ecological impact

At the end of its lifespan, an A. sexdens colony has moved up to 40,000 kg of soil. This has two important results: The soil becomes aerated with the excavation of tunnels and chambers, and enriched with nutrients as the ants bury their waste products. This represents a major way in which nutrients are recycled in their environment.[ citation needed ]

A. sexdens and other leafcutter ants are also important herbivores, consuming 12–17% of the leaf mass-produced in neotropical rainforests. One colony's consumption of plant material is comparable to that of a large mammalian herbivore, such as a cow. A. sexdens and the related species, A. cephalotes are the principal insect pests where they are found, destroying billions of dollars worth of crops with their ability to quickly defoliate and strip crops of anything useful to the ants. In fact, Atta ants are considered the primary herbivorous pest in many areas where they are found. [12]

If A. sexdens were to spread into tropical Africa, the results are speculated to be devastating. As the local plants have not developed defensive compounds against leafcutters and Africa does not have parasites evolved to infect them, the results for both the ecosystem and agriculture would be disastrous.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Ant</span> Family of insects

Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22,000 species have been classified. They are easily identified by their geniculate (elbowed) antennae and the distinctive node-like structure that forms their slender waists.

<i>Atta</i> (ant) Genus of ants

Atta is a genus of New World ants of the subfamily Myrmicinae. It contains at least 17 known species.

<span class="mw-page-title-main">Leafcutter ant</span> Any of 47 species of leaf-chewing ants

Leafcutter ants, a non-generic name, are any of 47 species of leaf-chewing ants belonging to the two genera Atta and Acromyrmex. These species of tropical, fungus-growing ants are all endemic to South and Central America, Mexico, and parts of the southern United States. Leafcutter ants can carry twenty times their body weight and cut and process fresh vegetation to serve as the nutritional substrate for their fungal cultivates.

<span class="mw-page-title-main">Fungus-growing ants</span> Tribe of ants

Fungus-growing ants comprise all the known fungus-growing ant species participating in ant–fungus mutualism. They are known for cutting grasses and leaves, carrying them to their colonies' nests, and using them to grow fungus on which they later feed.

<span class="mw-page-title-main">Texas leafcutter ant</span> Species of ant

The Texas leafcutter ant is a species of fungus-farming ant in the subfamily Myrmicinae. It is found in Texas, Louisiana, and north-eastern Mexico. Other common names include town ant, parasol ant, fungus ant, cut ant, and night ant. It harvests leaves from over 200 plant species, and is considered a major pest of agricultural and ornamental plants, as it can defoliate a citrus tree in less than 24 hours. Every colony has several queens and up to 2 million workers. Nests are built in well-drained, sandy or loamy soil, and may reach a depth of 6 m (20 ft), have 1000 entrance holes, and occupy 420 m2 (4,500 sq ft).

<span class="mw-page-title-main">Pharaoh ant</span> Species of ant

The pharaoh ant is a small (2 mm) yellow or light brown, almost transparent ant notorious for being a major indoor nuisance pest, especially in hospitals. A cryptogenic species, it has now been introduced to virtually every area of the world, including Europe, the Americas, Australasia and Southeast Asia. It is a major pest in the United States, Australia, and Europe.

<span class="mw-page-title-main">Army ant</span> Name used for several ant species

The name army ant (or legionary ant or marabunta) is applied to over 200 ant species in different lineages. Because of their aggressive predatory foraging groups, known as "raids", a huge number of ants forage simultaneously over a limited area.

<span class="mw-page-title-main">Ant–fungus mutualism</span> Symbiotic relationship

The ant–fungus mutualism is a symbiosis seen between certain ant and fungal species, in which ants actively cultivate fungus much like humans farm crops as a food source. There is only evidence of two instances in which this form of agriculture evolved in ants resulting in a dependence on fungi for food. These instances were the attine ants and some ants that are part of the Megalomyrmex genus. In some species, the ants and fungi are dependent on each other for survival. This type of codependency is prevalent among herbivores who rely on plant material for nutrition. The fungus’ ability to convert the plant material into a food source accessible to their host makes them the ideal partner. The leafcutter ant is a well-known example of this symbiosis. Leafcutter ants species can be found in southern South America up to the United States. However, ants are not the only ground-dwelling arthropods which have developed symbioses with fungi. A similar mutualism with fungi is also noted in termites within the subfamily Macrotermitinae which are widely distributed throughout the Old World tropics with the highest diversity in Africa.

<i>Eciton burchellii</i> Species of ant

Eciton burchellii is a species of New World army ant in the genus Eciton. This species performs expansive, organized swarm raids that give it the informal name, Eciton army ant. This species displays a high degree of worker polymorphism. Sterile workers are of four discrete size-castes: minors, medias, porters (sub-majors), and soldiers (majors). Soldiers have much larger heads and specialized mandibles for defense. In lieu of underground excavated nests, colonies of E. burchellii form temporary living nests known as bivouacs, which are composed of hanging live worker bodies and which can be disassembled and relocated during colony emigrations. Eciton burchellii colonies cycle between stationary phases and nomadic phases when the colony emigrates nightly. These alternating phases of emigration frequency are governed by coinciding brood developmental stages. Group foraging efforts known as "raids" are maintained by the use of pheromones, can be 200 metres (660 ft) long, and employ up to 200,000 ants. Workers are also adept at making living structures out of their own bodies to improve efficiency of moving as a group across the forest floor while foraging or emigrating. Workers can fill "potholes" in the foraging trail with their own bodies, and can also form living bridges. Numerous antbirds prey on the Eciton burchellii by using their raids as a source of food. In terms of geographical distribution, this species is found in the Amazon jungle and Central America.

<i>Nothomyrmecia</i> Genus of ants

Nothomyrmecia, also known as the dinosaur ant or dawn ant, is an extremely rare genus of ants consisting of a single species, Nothomyrmecia macrops. These ants live in South Australia, nesting in old-growth mallee woodland and Eucalyptus woodland. The full distribution of Nothomyrmecia has never been assessed, and it is unknown how widespread the species truly is; its potential range may be wider if it does favour old-growth mallee woodland. Possible threats to its survival include habitat destruction and climate change. Nothomyrmecia is most active when it is cold because workers encounter fewer competitors and predators such as Camponotus and Iridomyrmex, and it also increases hunting success. Thus, the increase of temperature may prevent them from foraging and very few areas would be suitable for the ant to live in. As a result, the IUCN lists the ant as Critically Endangered.

<i>Acromyrmex</i> Genus of ants

Acromyrmex is a genus of New World ants of the subfamily Myrmicinae. This genus is found in South America and parts of Central America and the Caribbean Islands, and contains 33 known species. Commonly known as "leafcutter ants" they comprise one of the two genera of advanced attines within the tribe Attini, along with Atta.

<i>Mycocepurus smithii</i> Species of ant

Mycocepurus smithii is a species of fungus-growing ant from Latin America. This species is widely distributed geographically and can be found from Mexico in the north to Argentina in the south, as well as on some Caribbean Islands. It lives in a variety of forested habitats and associated open areas. Two studies published in 2009 demonstrated that some populations of the species consist exclusively of females which reproduce via thelytokous parthenogenesis. A detailed study found evidence of sexual reproduction in some populations in the Brazilian Amazon. Accordingly, M. smithii consists of a mosaic of sexually and asexually reproducing populations. In asexual populations all ants in a single colony are female clones of the queen. Inside the colony, the ants cultivate a garden of fungus grown with pieces of dead vegetable matter, dead insects, and insect droppings.

<i>Atta colombica</i> Species of ant

Atta colombica is one of 47 species of leafcutter ants. This species is part of the Attini tribe.

<i>Atta insularis</i> Species of leafcutter ant endemic to Cuba

Atta insularis is a species of leafcutter ant, a New World ant of the subfamily Myrmicinae of the genus Atta endemic to Cuba. This species is from one of the two genera of advanced fungus-growing ants within the tribe Attini.

Acromyrmex insinuator is a social parasite of the closely related Acromyrmex echinatior. This specific parasite is of particular interest as it is an opportunity to study the development of social parasitism in the Attini tribe, and provides further evidence for Emery's rule, which theorizes social parasites among insects tend to be parasites of species or genera to which they are closely related to.

<i>Acromyrmex striatus</i> Species of ant

Acromyrmex striatus is a species of the leaf-cutter ants found in the Neotropics.

<i>Acromyrmex versicolor</i> Species of ant

Acromyrmex versicolor is known as the desert leafcutter ant. A. versicolor is found during the summer months in the Colorado and Sonoran deserts when there is precipitation. They form large, distinctive nest craters that are covered with leaf fragments. Living and dead leaves are collected by workers and used to cultivate fungus gardens. Each colony can have multiple queens, if they do this is a practice called polygyny, and each queen has her own batch of “starter” fungus. This species does not sting.

<i>Dorylus laevigatus</i> Species of ant

Dorylus laevigatus is a member of the army ant genus Dorylus, or Old World army ants. More specifically known as "driver ants", the genus Dorylus is abundant throughout Africa and stretches into tropical Asia, where D. laevigatus is primarily found. They are a eusocial colony-forming species, which live primarily underground, rarely venturing to the surface for any reason. D. laevigatus colonies are small for army ants, estimated averages falling between 30,000 and 1,000,000 individuals.

This is a glossary of terms used in the descriptions of ants.

<i>Leucoagaricus gongylophorus</i> Species of fungus

Leucoagaricus gongylophorus is a fungus in the family Agaricaceae which is cultivated by certain leafcutter ants. Like other species of fungi cultivated by ants, L. gongylophorus produces gongylidia, nutrient-rich hyphal swellings upon which the ants feed. Production of mushrooms occurs only once ants abandon the nest. L. gongylophorus is farmed by leaf cutter ant species belonging to the genera Atta and Acromyrmex, amongst others.

References

  1. "Catalogue of Life :". www.catalogueoflife.org.
  2. Discovery Communications Inc. 2002. "Leaf Cutter Ant" (On-line ). Animal Planet. Accessed 03/11/03 at http://animal.discovery.com/fansites/jeffcorwin/carnival/crawler/leafant.html.
  3. Hölldobler, Bert; Wilson, Edward O. (2009). The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies . W. W. Norton & Company. ISBN   9780393067040.
  4. EnchantedLearning.com. 2003. "Ant" (On-line ). Accessed 03/18/03 at http://www.enchantedlearning.com/subjects/insects/ant/Antcoloringpage.shtml.
  5. 1 2 3 Wilson, Edward O. (1980). "Caste and Division of Labor in Leaf-Cutter Ants (Hymenoptera: Formicidae: Atta): I. The Overall Pattern in A. sexdens". Behavioral Ecology and Sociobiology. 7 (2): 143–156. ISSN   0340-5443.
  6. 1 2 Solis, Daniel Russ; Fox, Eduardo Gonçalves Paterson; Ceccato, Marcela; Reiss, Itamar Cristina; Décio, Pâmela; Lorenzon, Natalia; Da Silva, Natiele Gonçalves; Bueno, Odair Correa (August 2012). "On the morphology of the worker immatures of the leafcutter ant Atta sexdens linnaeus (Hymenoptera: Formicidae)". Microscopy Research and Technique. 75 (8): 1059–1065. doi:10.1002/jemt.22031. PMID   22419653.
  7. Poulsen, M. 2002. "Leaf-cutting ants and their fungus" (On-line ). Accessed 03/19/2003 at http://www.webspawner.com/users/michaelpoulsen2003/index.html.
  8. Wirth, R., H. Herz, R. Ryel, W. Beyschlag, B. Holldobler. 2003. Herbivory of Leaf-cutting Ants. New York: Springer.
  9. 1 2 3 4 Hölldobler, Bert; Holldobler, Foundation Professor of Biology Bert; Wilson, Honorary Curator in Entomology and University Research Professor Emeritus Edward O.; Wilson, Edward O. (2009). The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies . W. W. Norton & Company. ISBN   9780393067040.
  10. Kerr, Warwick. "Tendências evolutivas na reprodução dos Himenópteros Sociais" (PDF). Sciences and Letters of Rio Claro. Archived from the original (PDF) on 2018-09-06. Retrieved 2019-05-16.
  11. Fjerdingstadt, E.J.; Boomsma, J.J. (2000-11-01). "Queen mating frequency and relatedness in young Atta sexdens colonies". Insectes Sociaux. 47 (4): 354–356. doi:10.1007/PL00001730. ISSN   1420-9098.
  12. Wilson, E., B. Holldobler. 1994. Journey to the Ants. Cambridge, Massachusetts: Kelknap Press of Harvard University Press.