Business process modeling

Last updated
A business process modeling of a process with a normal flow with the Business Process Model and Notation BPMN-AProcessWithNormalFlow.svg
A business process modeling of a process with a normal flow with the Business Process Model and Notation

Business process modeling (BPM) is the action of capturing and representing processes of an enterprise (i.e. modeling them), so that the current business processes may be analyzed, applied securely and consistently, improved, and automated.

Contents

BPM is typically performed by business analysts, with subject matter experts collaborating with these teams to accurately model processes. It is primarily used in business process management, software development, or systems engineering.

Alternatively, process models can be directly modeled from IT systems, such as event logs.

Overview

The five disciplines of business process management and their relationships Fife-Disciplines-Of-The-BPM.png
The five disciplines of business process management and their relationships

According to the Association of Business Process Management Professionals (ABPMP), business process modeling is one discipline of business process management that comprises the following five disciplines: [1] (Chapter 1.4 CBOK® structure) ← automatic translation from German

However, a completely separate consideration of the disciplines is not possible: Business process modeling always requires a business process analysis for modeling the as-is processes (see section Analysis of business activities) or specifications from process design for modeling the to-be processes (see sections Business process reengineering and Business process optimization).

The focus of business process modeling is on the representation of the flow of actions (activities), according to Hermann J. Schmelzer and Wolfgang Sesselmann consisting "of the cross-functional identification of value-adding activities that generate specific services expected by the customer and whose results have strategic significance for the company. They can extend beyond company boundaries and involve activities of customers, suppliers, or even competitors." [2] (Chapter 2.1 Differences between processes and business processes) ← automatic translation from German

But also other qualities (facts) such as data and business objects (as inputs/outputs, formal organizations and roles (responsible/accountable/consulted/informed persons, see RACI), resources and IT-systems as well as guidelines/instructions (work equipment), requirements, key figures etc. can be modeled.

The more of these characteristics are incorporated into the business process modeling, the better the abstraction of the business process models reflects reality - and the more complex the business process models become. "To reduce complexity and improve the comprehensibility and transparency of the models, the use of a view concept is recommended." [3] (Chapter 2.4 Views of process modeling) ← automatic translation from German There is also a brief comparison of the view concepts of five relevant German-speaking schools of business informatics: 1) August W. Scheer, 2) Hubert Österle, 3) Otto K. Ferstl and Elmar J. Sinz, 4) Hermann Gehring and 5) Andreas Gadatsch.

The term views (August W. Scheer, Otto K. Ferstl and Elmar J. Sinz, Hermann Gehring and Andreas Gadatsch) is not used uniformly in all schools of business informatics - alternative terms are design dimensions (Hubert Österle) or perspectives (Zachman).

M. Rosemann, A. Schwegmann, and P. Delfmann also see disadvantages in the concept of views: "It is conceivable to create information models for each perspective separately and thus partially redundantly. However, redundancies always mean increased maintenance effort and jeopardize the consistency of the models." [4] (Chapter 3.2.1 Relevant perspectives on process models) ← automatic translation from German

According to Andreas Gadatsch, business process modeling is understood as a part of business process management alongside process definition and process management. [3] (Chapter 1.1 Process management) ← automatic translation from German

Business process modeling is also a central aspect of holistic company mapping - which also deals with the mapping of the corporate mission statement, corporate policy/corporate governance, organizational structure, process organization, application architecture, regulations and interest groups as well as the market.

Typical breakdown of a process map into management, core and support processes Core process (quality management).gif
Typical breakdown of a process map into management, core and support processes

According to the European Association of Business Process Management EABPM, "there are three different types of end-to-end business processes:

These three process types can be identified in every company and are used in practice almost without exception as the top level for structuring business process models. [5] Instead the term leadership processes the term management processes is typically used. Instead of the term execution processes the term core processes has become widely accepted. [2] (Chapter 6.2.1 Objectives and concept) ← automatic translation from German, [6] (Chapter 1.3 The concept of process) ← automatic translation from German, [7] (Chapter 4.12.2 Differentiation between core and support objectives) ← automatic translation from German, [8] (Chapter 6.2.2 Identification and rough draft) ← automatic translation from German

If the core processes are then organized/decomposed at the next level in supply chain management (SCM), customer relationship management (CRM), and product lifecycle management (PLM), standard models of large organizations and industry associations such as the SCOR model can also be integrated into business process modeling.

History

Techniques to model business processes such as the flow chart, functional flow block diagram, control flow diagram, Gantt chart, PERT diagram, and IDEF have emerged since the beginning of the 20th century. The Gantt charts were among the first to arrive around 1899, the flow charts in the 1920s, functional flow block diagram and PERT in the 1950s, and data-flow diagrams and IDEF in the 1970s. Among the modern methods are Unified Modeling Language and Business Process Model and Notation. Still, these represent just a fraction of the methodologies used over the years to document business processes. [9] The term business process modeling was coined in the 1960s in the field of systems engineering by S. Williams in his 1967 article "Business Process Modelling Improves Administrative Control". [10] His idea was that techniques for obtaining a better understanding of physical control systems could be used in a similar way for business processes. It was not until the 1990s that the term became popular.

In the 1990s, the term process became a new productivity paradigm. [11] Companies were encouraged to think in processes instead of functions and procedures. Process thinking looks at the chain of events in the company from purchase to supply, from order retrieval to sales, etc. The traditional modeling tools were developed to illustrate time and cost, while modern tools focus on cross-functional activities. These cross-functional activities have increased significantly in number and importance, due to the growth of complexity and dependence. New methodologies include business process redesign, business process innovation, business process management, integrated business planning, among others, all "aiming at improving processes across the traditional functions that comprise a company". [11]

In the field of software engineering, the term business process modeling opposed the common software process modeling, aiming to focus more on the state of the practice during software development. [12] In that time (the early 1990s) all existing and new modeling techniques to illustrate business processes were consolidated as 'business process modeling languages'[ citation needed ]. In the Object Oriented approach, it was considered to be an essential step in the specification of business application systems. Business process modeling became the base of new methodologies, for instance, those that supported data collection, data flow analysis, process flow diagrams, and reporting facilities. Around 1995, the first visually oriented tools for business process modeling and implementation were presented.

Objectives of business process modeling

Influencing factors on the business process model Influencing-factors-on-the-business-process-model.png
Influencing factors on the business process model

The objective of business process modeling is a - usually graphical - representation of end-to-end processes, whereby complex facts of reality are documented using a uniform (systematized) representation and reduced to the substantial (qualities). Regulatory requirements for the documentation of processes often also play a role here (e.g. document control, traceability, or integrity), for example from quality management, information security management or data protection.

Business process modeling typically begins with determining the environmental requirements: First, the goal of the modeling (applications of business process modeling) must be determined. Business process models are now often used in a multifunctional way (see above). Second the model addressees must be determined, as the properties of the model to be created must meet their requirements. This is followed by the determination of the business processes to be modeled.

The qualities of the business process that are to be represented in the model are specified in accordance with the goal of the modeling. As a rule, these are not only the functions constituting the process, including the relationships between them, but also a number of other qualities, such as formal organization, input, output, resources, information, media, transactions, events, states, conditions, operations and methods.

The objectives of business process modeling may include (compare: Association of Business Process Management Professionals (ABPMP) [1] (Chapter 3.1.2 Process characteristics and properties) ← automatic translation from German):

Applications of business process modeling

Since business process modeling in itself makes no direct contribution to the financial success of a company, there is no motivation for business process modeling from the most important goal of a company, the intention to make a profit. The motivation of a company to engage in business process modeling therefore always results from the respective purpose. Michael Rosemann, Ansgar Schwegmann und Patrick Delfmann lists a number of purposes as motivation for business process modeling:

Business process re-engineering (BPR)

Within an extensive research program initiated in 1984 titled "Management in the 1990s" at MIT, the approach of process re-engineering emerged in the early 1990s. The research program was designed to explore the impact of information technology on the way organizations would be able to survive and thrive in the competitive environment of the 1990s and beyond. In the final report, N. Venkat Venkatraman [15] summarizes the result as follows: The greatest increases in productivity can be achieved when new processes are planned in parallel with information technologies.

This approach was taken up by Thomas H. Davenport [16] (Part I: A Framework For Process Innovation, Chapter: Introduction) as well as Michael M. Hammer and James A. Champy [17] and developed it into business process re-engineering (BPR) as we understand it today, according to which business processes are fundamentally restructured in order to achieve an improvement in measurable performance indicators such as costs, quality, service and time.

Business process re-engineering has been criticized in part for starting from a "green field" and therefore not being directly implementable for established companies. Hermann J. Schmelzer and Wolfgang Sesselmann assess this as follows: "The criticism of BPR has an academic character in many respects. ... Some of the points of criticism raised are justified from a practical perspective. This includes pointing out that an overly radical approach carries the risk of failure. It is particularly problematic if the organization and employees are not adequately prepared for BPR." [2] (Chapter 6.2.1 Objectives and concept) ← automatic translation from German

The high-level approach to BPR according to Thomas H. Davenport consists of:

  1. Identifying Process for Innovation
  2. Identifying Change Levers
  3. Developing Process Visions
  4. Understanding Existing Processes
  5. Designing and Prototyping the New Process

Certification of the management system according to ISO

International Organization for Standardization (ISO and official logo are registered trademarks) ISO Logo (Red square).svg
International Organization for Standardization (ISO and official logo are registered trademarks)

With ISO/IEC 27001:2022, the standard requirements for management systems are now standardized for all major ISO standards and have a process character.

General standard requirements for management systems with regard to processes

In the ISO/IEC 9001, ISO/IEC 14001, ISO/IEC 27001 standards, this is anchored in Chapter 4.4 in each case:

ISO/IEC 9001:2015

Clause 4.4 Quality management system and its processes

ISO/IEC 14001:2015

Clause 4.4. Environmental management systems

ISO/IEC 27001:2022

Clause 4.4 Information security management system

Each of these standards requires the organization to establish, implement, maintain and continually improve an appropriate management system "including the processes needed and their interactions". [18] , [19] , [20]

In the definition of the standard requirements for the processes needed and their interactions, ISO/IEC 9001 is more specific in clause 4.4.1 than any other ISO standard for management systems and defines that "the organization shall determine and apply the processes needed for" [18] an appropriate management system throughout the organization and also lists detailed requirements with regard to processes:

  • Determine the inputs required and the outputs expected
  • Determine the sequence and interaction
  • Define and apply the criteria and methods (including monitoring, measurement, and related performance indicators) for effective operation and control
  • Determine the resources needed
  • Assign the responsibilities and authorities
  • Address the risks and opportunities
  • Evaluate these processes and implement any changes needed for effective operation and control
  • Improve

In addition, clause 4.4.2 of the ISO/IEC 9001 lists some more detailed requirements with regard to processes:

  • Maintain documented information
  • Retain documented information for correct implementation

The standard requirements for documented information are also relevant for business process modelling as part of an ISO management system.

Specific standard requirements for management systems with regard to documented information

In the standards ISO/IEC 9001, ISO/IEC 14001, ISO/IEC 27001 the requirements with regard to documented information are anchored in clause 7.5 (detailed in the respective standard in clauses "7.5.1. General", "7.5.2. Creating and updating" and "7.5.3. Control of documented information").

The standard requirements of ISO/IEC 9001 used here as an example include in clause "7.5.1. General"

  • Documented information by the standard requirements; and
  • Documented information on the effectiveness of the management system must be included;

Demand in clause "7.5.2. Creating and updating"

  • Labelling and description (e.g. with title, date, author or reference number);
  • Suitable format (e.g. language, software version, graphics) and medium (e.g. paper, electronic); and
  • Review and approval

And require in clause "7.5.3. Control of documented information"

  • To ensure suitable and available at the place and time as required;
  • To ensure protection (e.g. against loss of confidentiality, improper use or loss of integrity);
  • To consider distribution, access, retrieval,and use;
  • To consider filing/storage and preservation (including preservation of readability);
  • To perform monitoring of changes (e.g. version control); and
  • To consider storage and disposition of further whereabouts.

Based on the standard requirements,

  • To determine and continuously improve the required processes and their interactions
  • To determine and maintain the content of the documented information deemed necessary and
  • To ensure the secure handling of documented information (protection, access, monitoring, and maintenance)

Preparing for ISO certification of a management system is a very good opportunity to establish or promote business process modelling in the organisation.

Business process optimization

Hermann J. Schmelzer and Wolfgang Sesselmann point out that the field of improvement of the three methods mentioned by them as examples for process optimization (control and reduction of total cycle time (TCT), Kaizen and Six Sigma) are processes: In the case of total cycle time (TCT), it is the business processes (end-to-end processes) and sub-processes, with Kaizen it is the process steps and activity and with Six Sigma it is the sub-processes, process steps and activity. [2] (Chapter 6.3.1 Total Cycle Time (TCT), KAIZEN and Six Sigma in comparison) ← automatic translation from German

For the total cycle time (TCT), Hermann J. Schmelzer and Wolfgang Sesselmann list the following key features: [2] (Chapter 6.3.2 Total Cycle Time (TCT)) ← automatic translation from German

Consequently, business process modeling for TCT must support adequate documentation of barriers, barrier handling, and measurement.

When examining Kaizen tools, initially, there is no direct connection to business processes or business process modeling. However, Kaizen and business process management can mutually enhance each other. In the realm of business process management, Kaizen's objectives are directly derived from the objectives for business processes and sub-processes. This linkage ensures that Kaizen measures effectively support the overarching business objectives." [2] (Chapter 6.3.3 KAIZEN) ← automatic translation from German

Six Sigma is designed to prevent errors and improve the process capability so that the proportion of process outcomes that meet the requirements is 6σ - or in other words, for every million process outcomes, only 3.4 errors occur. Hermann J. Schmelzer and Wolfgang Sesselmann explain: "Companies often encounter considerable resistance at a level of 4σ, which makes it necessary to redesign business processes in the sense of business process re-engineering (design for Six Sigma)." [2] (Chapter 6.3.4 Six Sigma) ← automatic translation from German For a reproducible measurement of process capability, precise knowledge of the business processes is required and business process modeling is a suitable tool for design for Six Sigma. Six Sigma, therefore, uses business process modeling according to SIPOC as an essential part of the methodology, and business process modeling using SIPOC has established itself as a standard tool for Six Sigma.

Inter-company business process modeling

The aim of inter-company business process modeling is to include the influences of external stakeholders in the analysis or to achieve inter-company comparability of business processes, e.g. to enable benchmarking.

Martin Kugler lists the following requirements for business process modeling in this context: [21] (Chapter 14.2.1 Requirements for inter-company business process modeling) ← automatic translation from German

Topics

Analysis of business activities

Define framework conditions

The analysis of business activities determines and defines the framework conditions for successful business process modeling. This is where the company should start,

  • define the relevant applications of business process modeling on the basis of the business model and where it is positioned in the value chain,
  • derive the strategy for the long-term success of business process modeling from the business strategy and develop an approach for structuring the business process models. Both the relevant purposes and the strategy directly influence the process map.

This strategy for the long-term success of business process modeling can be characterized by the market-oriented view and/or the resource-based view. Jörg Becker and Volker Meise explain: "Whereas in the market view, the industry and the behavior of competitors directly determine a company's strategy, the resource-oriented approach takes an internal view by analyzing the strengths and weaknesses of the company and deriving the direction of development of the strategy from this." [7] (Chapter 4.6 The resource-based view) ← automatic translation from German And further: "The alternative character initially formulated in the literature between the market-based and resource-based view has now given way to a differentiated perspective. The core competence approach is seen as an important contribution to the explanation of success potential, which is used alongside the existing, market-oriented approaches." [7] (Chapter 4.7 Combination of views) ← automatic translation from German Depending on the company's strategy, the process map will therefore be the business process models with a view to market development and to resource optimization in a balanced manner.

Identify business processes

Following the identification phase, a company's business processes are distinguished from one another through an analysis of their respective business activities (refer also to business process analysis). A business process constitutes a set of interconnected, organized actions (activities) geared towards delivering a specific service or product (to fulfill a specific goal) for a particular customer or customer group.

According to the European Association of Business Process Management (EABPM), establishing a common understanding of the current process and its alignment with the objectives serves as an initial step in process design or reengineering." [1] (Chapter 4 Process analysis) ← automatic translation from German

The effort involved in analysing the as-is processes is repeatedly criticised in the literature, especially by proponents of business process re-engineering (BPR), and it is suggested that the definition of the target state should begin immediately.

Hermann J. Schmelzer and Wolfgang Sesselmann, on the other hand, discuss and evaluate the criticism levelled at the radical approach of business process re-engineering (BPR) in the literature and "recommend carrying out as-is analyses. A reorganisation must know the current weak points in order to be able to eliminate them. The results of the analyses also provide arguments as to why a process re-engineering is necessary. It is also important to know the initial situation for the transition from the current to the target state. However, the analysis effort should be kept within narrow limits. The results of the analyses should also not influence the redesign too strongly." [2] (Chapter 6.2.2 Critical assessment of the BPR) ← automatic translation from German

Typical breakdown of a process map into management, core and support processes Core process (quality management).gif
Typical breakdown of a process map into management, core and support processes

Structure business processes - building a process map

Timo Füermann explains: "Once the business processes have been identified and named, they are now compiled in an overview. Such overviews are referred to as process maps." [22] (Chapter 2.4 Creating the process map) ← automatic translation from German

Example of a process map for a market-driven company Process-map-for-a-market-driven-company.png
Example of a process map for a market-driven company

Jörg Becker and Volker Meise provide the following list of activities for structuring business processes:

  • Enumeration of the main processes,
  • Definition of the process boundaries,
  • Determining the strategic relevance of each process,
  • Analysis of the need for improvement of a process and
  • Determining the political and cultural significance of the process [7] (Chapter 4.10 Defining the process structure) ← automatic translation from German

The structuring of business processes generally begins with a distinction between management, core, and support processes.

  • Management processes govern the operation of a company. Typical management processes include corporate governance and strategic management. They define corporate objectives and monitor the achievement of objectives.
  • Core processes constitute the core business and create the primary value stream. Typical operational processes are purchasing, manufacturing, marketing, and sales. They generate visible, direct customer benefits.
  • Support processes provide and manage operational resources. They support the core and management processes by ensuring the smooth running of business operations. Examples include accounting, recruitment, and technical support.
Example of a process map for a resource-driven company VAC-production-company.png
Example of a process map for a resource-driven company

Structure core processes based on the strategy for the long-term success of business process modeling

As the core business processes clearly make up the majority of a company's identified business processes, it has become common practice to subdivide the core processes once again. There are different approaches to this depending on the type of company and business activity. These approaches are significantly influenced by the defined application of business process modeling and the strategy for the long-term success of business process modeling.

In the case of a primarily market-based strategy, end-to-end core business processes are often defined from the customer or supplier to the retailer or customer (e.g. "from offer to order", "from order to invoice", "from order to delivery", "from idea to product", etc.). In the case of a strategy based on resources, the core business processes are often defined on the basis of the central corporate functions ("gaining orders", "procuring and providing materials", "developing products", "providing services", etc.).

In a differentiated view without a clear focus on the market view or the resource view, the core business processes are typically divided into CRM, PLM and SCM.

  • CRM (customer relationship management) describes the business processes for customer acquisition, quotation and order creation as well as support and maintenance
  • PLM (product lifecycle management) describes the business processes from product portfolio planning, product planning, product development and product maintenance to product discontinuation and individual developments
  • SCM (supply chain management) describes the business processes from supplier management through purchasing and all production stages to delivery to the customer, including installation and commissioning where applicable
Example of a process map for a value-driven company Process-map-for-a-value-driven-company.png
Example of a process map for a value-driven company

However, other approaches to structuring core business processes are also common, for example from the perspective of customers, products or sales channels.

  • "Customers" describes the business processes that can be assigned to specific customer groups (e.g. private customer, business customer, investor, institutional customer)
  • "Products" describes the business processes that are product-specific (e.g. current account, securities account, loan, issue)
  • "Sales channels" describe the business processes that are typical for the type of customer acquisition and support (e.g. direct sales, partner sales, online).

The result of structuring a company's business processes is the process map (shown, for example, as a value chain diagram). Hermann J. Schmelzer and Wolfgang Sesselmann add: "There are connections and dependencies between the business processes. They are based on the transfer of services and information. It is important to know these interrelationships in order to understand, manage, and control the business processes." [2] (Chapter 2.4.3 Process map) ← automatic translation from German

Definition of business processes

A definition of product development VAC-production-company3.png
A definition of product development

The definition of business processes often begins with the company's core processes because they

For the company

A definition of customer relationship management VAC CRM Sales order-processing-and-project management.png
A definition of customer relationship management

The scope of a business process should be selected in such a way that it contains a manageable number of sub-processes, while at the same time keeping the total number of business processes within reasonable limits. Five to eight business processes per business unit usually cover the performance range of a company.

Each business process should be independent - but the processes are interlinked.

The definition of a business process includes: What result should be achieved on completion? What activities are necessary to achieve this? Which objects should be processed (orders, raw materials, purchases, products, ...)?

Depending on the prevailing corporate culture, which may either be more inclined towards embracing change or protective of the status quo and the effectiveness of communication, defining business processes can prove to be either straightforward or challenging. This hinges on the willingness of key stakeholders within the organization, such as department heads, to lend their support to the endeavor. Within this context, effective communication plays a pivotal role.

In elucidating this point, Jörg Becker and Volker Meise elucidate that the communication strategy within an organizational design initiative should aim to garner support from members of the organization for the intended structural changes. It is worth noting that business process modeling typically precedes business process optimization, which entails a reconfiguration of process organization - a fact well understood by the involved parties. Therefore, the communication strategy must focus on persuading organizational members to endorse the planned structural adjustments." [7] (Chapter 4.15 Influencing the design of the regulatory framework) ← automatic translation from German In the event of considerable resistance, however, external knowledge can also be used to define the business processes.

Value chain diagram with exemplary representation of "product life cycle management" with SCRUM VAC PLM with SCRUM.png
Value chain diagram with exemplary representation of "product life cycle management" with SCRUM

General process identification and individual process identification

Jörg Becker and Volker Meise mention two approaches (general process identification and individual process identification) and state the following about general process identification: "In the general process definition, it is assumed that basic, generally valid processes exist that are the same in all companies." It goes on to say: "Detailed reference models can also be used for general process identification. They describe industry- or application system-specific processes of an organization that still need to be adapted to the individual case, but are already coordinated in their structure." [7] (Chapter 4.11 General process identification) ← automatic translation from German

Jörg Becker and Volker Meise state the following about individual process identification: "In individual or singular process identification, it is assumed that the processes in each company are different according to customer needs and the competitive situation and can be identified inductively based on the individual problem situation." [7] (Chapter 4.12 Individual process identification) ← automatic translation from German

The result of the definition of the business processes is usually a rough structure of the business processes as a value chain diagram.

Further structuring of business processes

Example of the decomposition of a business process into sub-processes - supplemented by milestones, business units, data objects and IT-systems VAC-production-company4.png
Example of the decomposition of a business process into sub-processes - supplemented by milestones, business units, data objects and IT-systems

The rough structure of the business processes created so far will now be decomposed - by breaking it down into sub-processes that have their own attributes but also contribute to achieving the goal of the business process. This decomposition should be significantly influenced by the application and strategy for the long-term success of business process modeling and should be continued as long as the tailoring of the sub-processes defined this way contributes to the implementation of the purpose and strategy.

A sub-process created in this way uses a model to describe the way in which procedures are carried out in order to achieve the intended operating goals of the company. The model is an abstraction of reality (or a target state) and its concrete form depends on the intended use (application).

A further decomposition of the sub-processes can then take place during business process modeling if necessary. If the business process can be represented as a sequence of phases, separated by milestones, the decomposition into phases is common. Where possible, the transfer of milestones to the next level of decomposition contributes to general understanding.

The result of the further structuring of business processes is usually a hierarchy of sub-processes, represented in value chain diagrams. It is common that not all business processes have the same depth of decomposition. In particular, business processes that are not safety-relevant, cost-intensive or contribute to the operating goal are broken down to a much lesser depth. Similarly, as a preliminary stage of a decomposition of a process planned for (much) later, a common understanding can first be developed using simpler / less complex means than value chain diagrams - e.g. with a textual description or with a turtle diagram [22] (Chapter 3.1 Defining process details) ← automatic translation from German (not to be confused with turtle graphic!).

Assigning the process responsibility

Sample for a pyramid of process responsibility Pyramid-of-process-responsibility.png
Sample for a pyramid of process responsibility

Complete, self-contained processes are summarized and handed over to a responsible person or team. The process owner is responsible for success, creates the framework conditions and coordinates his or her approach with that of the other process owners. Furthermore, he/she is responsible for the exchange of information between the business processes. This coordination is necessary in order to achieve the overall goal orientation.

Modeling business process

Design of the process chains

If business processes are documented using a specific IT-system and representation, e.g. graphically, this is generally referred to as modeling. The result of the documentation is the business process model.

To be model and as is model superimposed on the PDCA TOBE-modell and ASIS-modell in PDCA.png
To be model and as is model superimposed on the PDCA
As is modeling and to be modeling

The question of whether the business process model should be created through as is modeling or to be modeling is significantly influenced by the defined application and the strategy for the long-term success of business process modeling. The previous procedure with analysis of business activities, defineition of business processes and further structuring of business processes is advisable in any case.

As-is modeling

Ansgar Schwegmann and Michael Laske explain: "Determining the current status is the basis for identifying weaknesses and localizing potential for improvement. For example, weak points such as organizational breaks or insufficient IT penetration can be identified." [23] (Chapter 5.1 Intention of the as is modeling) ← automatic translation from German

The following disadvantages speak against as is modeling:

  • The creativity of those involved in the project to develop optimal target processes is stifled, as old structures and processes may be adopted without reflection in downstream target modeling and
  • The creation of detailed as is models represents a considerable effort, also influenced by the effort required to reach a consensus between the project participants at interfaces and responsibility transitions

These arguments weigh particularly heavily if Business process re-engineering (BPR) is planned anyway.

Ansgar Schwegmann and Michael Laske also list a number of advantages of as is modeling: [23] (Chapter 5.1 Intention of as-is modeling) ← automatic translation from German

  • Modeling the current situation is the basis for identifying weaknesses and potential for improvement
  • Knowledge of the current state is a prerequisite for developing migration strategies to the target state
  • Modeling the current state provides an overview of the existing situation, which can be particularly valuable for newly involved and external project participants
  • The as is modeling can be a starting point for training and introducing project participants to the tools and methods
  • The as is model can serve as a checklist for later target modeling so that no relevant issues are overlooked
  • The as is models can be used as starting models for target modeling if the target state is very similar to the current situation, at least in some areas

Other advantages can also be found, such as

  • The as is model is suitable for supporting certification of the management system
  • The as is model can serve as a basis for organizational documentation (written rules, specifications and regulations of the organization, ...)
  • The requirements for workflow management can be checked on the basis of the as is model (definition of processes, repetition rate, ...)
  • Key figures can be collected on the basis of the as is model in order to be compared with the key figures achieved after a reorganization and to measure the success of the measures.
To be modeling

Mario Speck and Norbert Schnetgöke define the objective of to be modeling as follows: "The target processes are based on the strategic goals of the company. This means that all sub-processes and individual activities of a company must be analyzed with regard to their target contribution. Sub-processes or activities that cannot be identified as value-adding and do not serve at least one non-monetary corporate objective must therefore be eliminated from the business processes." [8] (Chapter 6.2.3 Capturing and documenting to be models )

They also list five basic principles that have proven their worth in the creation of to be models:

  • Parallel processing of sub-processes and individual activities is preferable to sequential processing - it contains the greater potential for optimization.
  • The development of a sub-process should be carried out as consistently as possible by one person or group - this allows the best model quality to be achieved.
  • Self-monitoring should be made possible for individual sub-processes and individual activities during processing - this reduces quality assurance costs.
  • If not otherwise possible, at least one internal customer/user should be defined for each process - this strengthens customer awareness and improves the assessability of process performance.
  • Learning effects that arise during the introduction of the target processes should be taken into account - this strengthens the employees' awareness of value creation.

The business process model created by as is modeling or to be modeling consists of:

Sub-processes

Delimitation
Breakdown of the business process Process sales pipeline into sub-processes based on phases VAC Process sales pipeline.png
Breakdown of the business process Process sales pipeline into sub-processes based on phases

August W. Scheer is said to have said in his lectures: A process is a process is a process. This is intended to express the recursiveness of the term, because almost every process can be broken down into smaller processes (sub-processes). In this respect, terms such as business process, main process, sub-process or elementary process are only a desperate attempt to name the level of process decomposition. As there is no universally valid agreement on the granularity of a business process, main process, sub-process or elementary process, the terms are not universally defined, but can only be understood in the context of the respective business process model.

In addition, some German-speaking schools of business informatics do not use the terms process (in the sense of representing the sequence of actions) and function (in the sense of a delimited corporate function/action (activity) area that is clearly assigned to a corporate function owner).

Function tree with an excerpt of typical company actions, sales pipeline relevant functions marked FT-Excerpt-of-company-functions.png
Function tree with an excerpt of typical company actions, sales pipeline relevant functions marked

For example, in August W. Scheer's ARIS it is possible to use functions from the function view as processes in the control view and vice versa. Although this has the advantage that already defined processes or functions can be reused across the board, it also means that the proper purpose of the function view is diluted and the ARIS user is no longer able to separate processes and functions from one another.

The first image shows as a value chain diagram how the business process Edit sales pipeline has been broken down into sub-processes (in the sense of representing the sequence of actions (activities)) based on its phases.

The second image shows an excerpt of typical functions (in the sense of delimited corporate function/action (activity) areas, which are assigned to a corporate function owner), which are structured based on the areas of competence and responsibility hierarchy. The corporate functions that support the business process Edit sales pipeline are marked in the function tree.

Utilization

A business process can be decomposed into sub-processes until further decomposition is no longer meaningful/possible (smallest meaningful sub-process = elementary process). Usually, all levels of decomposition of a business process are documented in the same methodology: Process symbols. The process symbols used when modeling one level of decomposition then usually refer to the sub-processes of the next level until the level of elementary processes is reached. Value chain diagrams are often used to represent business processes, main processes, sub-processes and elementary processes.

Workflow

A workflow is a representation of a sequence of tasks, declared as work of a person, of a simple or complex mechanism, of a group of persons, [24] of an organization of staff, or of machines (including IT-systems). A workflow is therefore always located at the elementary process level. The workflow may be seen as any abstraction of real work, segregated into workshare, work split, or other types of ordering. For control purposes, the workflow may be a view of real work under a chosen aspect.

Functions (Tasks)

Tasks of an elementary process, task sequence determined by three different approaches Actions-of-an-elementary-process.png
Tasks of an elementary process, task sequence determined by three different approaches
Delimitation

The term functions is often used synonymously for a delimited corporate function/action (activita) area, which is assigned to a corporate function owner, and the atomic activity (task) at the level of the elementary processes. In order to avoid the double meaning of the term function, the term task can be used for the atomic activities at the level of the elementary processes in accordance with the naming in BPMN. Modern tools also offer the automatic conversion of a task into a process, so that it is possible to create a further level of process decomposition at any time, in which a task must then be upgraded to an elementary process.

Utilization

The graphical elements used at the level of elementary processes then describe the (temporal-logical) sequence with the help of functions (tasks). The sequence of the functions (tasks) within the elementary processes is determined by their logical linking with each other (by logical operators or Gateways), provided it is not already specified by input/output relationships or Milestones. It is common to use additional graphical elements to illustrate interfaces, states (events), conditions (rules), milestones, etc. in order to better clarify the process. Depending on the modeling tool used, very different graphical representation (models) are used.

Sample of a Function Allocation Diagram (FAD) for outsourcing master data to a separate view in order to keep the readability of the process model FAD-with-input-output-resources-and-regulations.png
Sample of a Function Allocation Diagram (FAD) for outsourcing master data to a separate view in order to keep the readability of the process model

Furthermore, the functions (tasks) can be supplemented with graphical elements to describe inputs, outputs, systems, roles, etc. with the aim of improving the accuracy of the description and/or increasing the number of details. However, these additions quickly make the model confusing. To resolve the contradiction between accuracy of description and clarity, there are two main solutions: Outsourcing the additional graphical elements for describing inputs, outputs, systems, roles, etc. to a Function Allocation Diagram (FAD) or selectively showing/hiding these elements depending on the question/application.

The function allocation diagram shown in the image illustrates the addition of graphical elements for the description of inputs, outputs, systems, roles, etc. to functions (tasks) very well.

Master data (artifacts)

The term master data is neither defined by The Open Group (The Open Group Architecture Framework, TOGAF) or John A. Zachman (Zachman Framework) nor any of the five relevant German-speaking schools of business informatics: 1) August W. Scheer, 2) Hubert Österle, 3) Otto K. Ferstl and Elmar J. Sinz, 4) Hermann Gehring and 5) Andreas Gadatsch and is commonly used in the absence of a suitable term in the literature. It is based on the general term for data that represents basic information about operationally relevant objects and refers to basic information that is not primary information of the business process.

For August W. Scheer in ARIS, this would be the basic information of the organization view, data view, function view and performance view. [25] (Chapter 1 The vision: A common language for IT and management) ← automatic translation from German

For Andreas Gadatsch in GPM (Ganzheitliche Prozessmodellierung (German), means holistic process modelling), this would be the basic information of the organizational structure view, activity structure view, data structure view, and application structure view. [3] (Chapter 3.2 GPM - Holistic process modelling) ← automatic translation from German

For Otto K. Ferstl and Elmar J. Sinz in SOM (Semantic Objektmodell), this would be the basic information of the levels Business plan and Resourcen.

Master data can be, for example:

  • The business unit in whose area of responsibility a process takes place
  • The business object whose information is required to execute the process
  • The product that is produced by the process
  • The policy to be observed when executing the process
  • The risk that occurs in a process
  • The measure that is carried out to increase the process capability
  • The control that is performed to ensure the governance of the process
  • The IT-system that supports the execution of the business process
  • The milestone that divides processes into process phases
  • etc.

By adding master data to the business process modeling, the same business process model can be used for different application and a return on investment for the business process modeling can be achieved more quickly with the resulting synergy.

Depending on how much value is given to master data in business process modeling, it is still possible to embed the master data in the process model without negatively affecting the readability of the model or the master data should be outsourced to a separate view, e.g. Function Allocation Diagrams.

If master data is systematically added to the business process model, this is referred to as an artifact-centric business process model.

Artifact-centric business process

The artifact-centric business process model has emerged as a holistic approach for modeling business processes, as it provides a highly flexible solution to capture operational specifications of business processes. It particularly focuses on describing the data of business processes, known as "artifacts", by characterizing business-relevant data objects, their life-cycles, and related services. The artifact-centric process modelling approach fosters the automation of the business operations and supports the flexibility of the workflow enactment and evolution. [26]

Integration of external documents and IT-systems

The integration of external documents and IT-systems can significantly increase the added value of a business process model.

For example, direct access to objects in a knowledge database or documents in a rule framework can significantly increase the benefits of the business process model in everyday life and thus the acceptance of business process modeling. All IT-systems involved can exploit their specific advantages and cross-fertilize each other (e.g. link to each other or standardize the filing structure):

  • short response times of the knowledge database; characterized by a relatively high number of auditors, very fast adaptation of content, and low requirements for the publication of content - e.g. realized with a wiki
  • Legally compliant documents of the rule framework; characterized by a very small number of specially trained auditors, validated adaptation of content, and high requirements for the release of content - e.g. implemented with a document management system
  • Integrating graphical representation of processes by a BPM system; characterized by a medium number of auditors, moderately fast adaptation of content, and modest requirements for the release of content

If all relevant objects of the knowledge database and / or documents of the rule framework are connected to the processes, the end users have context-related access to this information and do not need to be familiar with the respective filing structure of the connected systems.

The direct connection of external systems can also be used to integrate current measurement results or system statuses into the processes (and, for example, to display the current operating status of the processes), to display widgets and show output from external systems or to jump to external systems and initiate a transaction there with a preconfigured dialog.

Further connections to external systems can be used, for example, for electronic data interchange (EDI).

Model consolidation

This is about checking whether there are any redundancies. If so, the relevant sub-processes are combined. Or sub-processes that are used more than once are outsourced to support processes. For a successful model consolidation, it may be necessary to revise the original decomposition of the sub-processes.

Ansgar Schwegmann and Michael Laske explain: "A consolidation of the models of different modeling complexes is necessary in order to obtain an integrated ... model." [23] (Chapter 5.2.4 Model consolidation) ← automatic translation from German They also list a number of aspects for which model consolidation is important:

Process chaining and control flow patterns

Modal chaining (necessary finalization of sub-processes 1a, 1b and 1c before the start of sub-process 2) in an example using BPMN tools BPMN-Modale-Prozessverkettung AND.png
Modal chaining (necessary finalization of sub-processes 1a, 1b and 1c before the start of sub-process 2) in an example using BPMN tools

The chaining of the sub-processes with each other and the chaining of the functions (tasks) in the sub-processes is modeled using Control Flow Patterns.

Material details of the chaining (What does the predecessor deliver to the successor?) are specified in the process interfaces if intended.

Process interfaces

Process interfaces are defined in order to

As a rule, this what and its structure is determined by the requirements in the subsequent process.

Process interfaces represent the exit from the current business process/sub-process and the entry into the subsequent business process/sub-process.

A process flow with interface to a service process in EPC syntax (top) and BPMN syntax (bottom) Process-flow-with-interface-to-service-process.png
A process flow with interface to a service process in EPC syntax (top) and BPMN syntax (bottom)

Process interfaces are therefore description elements for linking processes section by section. A process interface can

Process interfaces are agreed between the participants of superordinate/subordinate or neighboring business process models. They are defined and linked once and used as often as required in process models.

Interfaces can be defined by:

In real terms, the transferred inputs/outputs are often data or information, but any other business objects are also conceivable (material, products in their final or semi-finished state, documents such as a delivery bill). They are provided via suitable transport media (e.g. data storage in the case of data).

Business process management

See article Business process management.

In order to put improved business processes into practice, change management programs are usually required. With advances in software design, the vision of BPM models being fully executable (enabling simulations and round-trip engineering) is getting closer to reality.

Adaptation of process models

In business process management, process flows are regularly reviewed and optimized (adapted) if necessary. Regardless of whether this adaptation of process flows is triggered by continuous process improvement or by process reorganization (business process re-engineering), it entails an update of individual sub-processes or an entire business process.

Representation type and notation

In practice, combinations of informal, semiformal and formal models are common: informal textual descriptions for explanation, semiformal graphical representation for visualization, and formal language representation to support simulation and transfer into executable code.

Modelling techniques

There are various standards for notations; the most common are:

Furthermore:

In addition, representation types from software architecture can also be used:

Business Process Model and Notation (BPMN)

Example of a Business Process Model and Notation for a process with a normal flow BPMN-AProcessWithNormalFlow.svg
Example of a Business Process Model and Notation for a process with a normal flow

Business Process Model and Notation (BPMN) is a graphical representation for specifying business processes in a business process model.

Originally developed by the Business Process Management Initiative (BPMI), BPMN has been maintained by the Object Management Group (OMG) since the two organizations merged in 2005. Version 2.0 of BPMN was released in January 2011, [30] at which point the name was amended to Business Process Model and Notation to reflect the introduction of execution semantics, which were introduced alongside the existing notational and diagramming elements. Though it is an OMG specification, BPMN is also ratified as ISO 19510. The latest version is BPMN 2.0.2, published in January 2014. [31]

Event-driven process chain (EPC)

Example of a more complex EPC diagram (in German). EPK komplexes Beispiel.png
Example of a more complex EPC diagram (in German).

An event-driven process chain (EPC) is a type of flow chart for business process modeling. EPC can be used to configure enterprise resource planning execution, and for business process improvement. It can be used to control an autonomous workflow instance in work sharing.

The event-driven process chain method was developed within the framework of Architecture of Integrated Information Systems (ARIS) by August-Wilhelm Scheer at the Institut für Wirtschaftsinformatik, Universität des Saarlandes (Institute for Business Information Systems at the University of Saarland) in the early 1990s. [32]

Petri net

A Petri net, also known as a place/transition net (PT net), is one of several mathematical modeling languages for the description of distributed systems. It is a class of discrete event dynamic system. A Petri net is a directed bipartite graph that has two types of elements: places and transitions. Place elements are depicted as white circles and transition elements are depicted as rectangles. A place can contain any number of tokens, depicted as black circles. A transition is enabled if all places connected to it as inputs contain at least one token. Some sources [33] state that Petri nets were invented in August 1939 by Carl Adam Petri—at the age of 13—for the purpose of describing chemical processes.

Like industry standards such as UML activity diagrams, Business Process Model and Notation, and event-driven process chains, Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution. Unlike these standards, Petri nets have an exact mathematical definition of their execution semantics, with a well-developed mathematical theory for process analysis[ citation needed ].

(a) Petri net trajectory example Animated Petri net commons.gif
(a) Petri net trajectory example

Flowchart

A simple flowchart representing a process for dealing with a non-functioning lamp. LampFlowchart.svg
A simple flowchart representing a process for dealing with a non-functioning lamp.

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

The flowchart shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows. This diagrammatic representation illustrates a solution model to a given problem. Flowcharts are used in analyzing, designing, documenting or managing a process or program in various fields. [34]

Hierarchical input process output model (HIPO)

IBM stencil for HIPO. Stencil IBM-HIPO.jpg
IBM stencil for HIPO.
HIPO model (hierarchical input process output model) is a systems analysis design aid and documentation technique from the 1970s, [35] used for representing the modules of a system as a hierarchy and for documenting each module. [36] [37]

Lifecycle Modeling Language (LML)

The Lifecycle Modeling Language (LML) is an open-standard modeling language designed for systems engineering. It supports the full lifecycle: conceptual, utilization, support and retirement stages. Along with the integration of all lifecycle disciplines including, program management, systems and design engineering, verification and validation, deployment and maintenance into one framework. [38] LML was originally designed by the LML steering committee. The specification was published October 17, 2013.

This is a modeling language like UML and SysML that supports additional project management uses such as risk analysis and scheduling. LML uses common language to define its modeling elements such as entity, attribute, schedule, cost, and relationship. [39]

Subject-oriented business process management

Subject-oriented business process management (S-BPM) is a communication based view on actors (the subjects), which compose a business process orchestration or choreography. [40] The modeling paradigm uses five symbols to model any process and allows direct transformation into executable form.

Each business process consists of two or more subjects which exchange messages. Each subject has an internal behavior (capsulation), which is defined as a control flow between different states, which are receive and send message and do something. For practical usage and for syntactical sugaring there are more elements available, but not necessary.

In 2011 and 2012 S-BPM has been included in Gartner's Hype Cycle.

Cognition enhanced Natural language Information Analysis Method

Cognition enhanced Natural language Information Analysis Method (CogNIAM) is a conceptual fact-based modelling method, that aims to integrate the different dimensions of knowledge: data, rules, processes and semantics. To represent these dimensions world standards SBVR, BPMN and DMN from the Object Management Group (OMG) are used. CogNIAM, a successor of NIAM, is based on the work of knowledge scientist Sjir Nijssen.[ citation needed ]

CogNIAM structures knowledge, gathered from people, documentation and software, by classifying it. For this purpose CogNIAM uses the so-called ‘Knowledge Triangle’. [41] The outcome of CogNIAM is independent of the person applying it. The resulting model allows the knowledge to be expressed in diagrammatic form as well as in controlled natural language. [42]

SIPOC (suppliers, inputs, process, outputs and customers)

In process improvement, SIPOC or suppliers, inputs, process, outputs and customers (sometimes in the reversed order: COPIS) is a tool that summarizes the inputs and outputs of one or more business processes in table form, with each of the words forming a column in the table used in the analysis. [43] [44] It is used to define a business process from beginning to end before work on process improvement begins.[ citation needed ]

Unified Modelling Language (UML)

UML logo UML logo.svg
UML logo

The unified modeling language (UML) is a general-purpose visual modeling language that is intended to provide a standard way to visualize the design of a system. [45]

UML provides a standard notation for many types of diagrams which can be roughly divided into three main groups: behavior diagrams, interaction diagrams, and structure diagrams.

The creation of UML was originally motivated by the desire to standardize the disparate notational systems and approaches to software design. It was developed at Rational Software in 1994–1995, with further development led by them through 1996. [46]

In 1997, UML was adopted as a standard by the Object Management Group (OMG) and has been managed by this organization ever since. In 2005, UML was also published by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) as the ISO/IEC 19501 standard. [47] Since then the standard has been periodically revised to cover the latest revision of UML. [48]

In software engineering, most practitioners do not use UML, but instead produce informal hand drawn diagrams; these diagrams, however, often include elements from UML. [49] :536

Integration Definition (IDEF)

IDEF methods: part of the systems engineer's toolbox IDEF Methods.svg
IDEF methods: part of the systems engineer's toolbox

IDEF, initially an abbreviation of ICAM Definition and renamed in 1999 as Integration Definition, is a family of modeling languages in the field of systems and software engineering. They cover a wide range of uses from functional modeling to data, simulation, object-oriented analysis and design, and knowledge acquisition. These definition languages were developed under funding from U.S. Air Force and, although still most commonly used by them and other military and United States Department of Defense (DoD) agencies, are in the public domain.

The most-widely recognized and used components of the IDEF family are IDEF0, a functional modeling language building on SADT, and IDEF1X, which addresses information models and database design issues.

Formalized Administrative Notation (FAN)

Formalized administrative notation (FAN) is a method that enables administrators of various organizations to describe the flow and sequence of operations, identify their responsibilities, define and integrate their transactions etc. Its objective is to formulate the mode of implementing a specific system in order to have further systemization. Originally called in Spanish as MECAF (Metodo de expresion de circuitos administrativos formalizado)

Harbarian process modeling (HPM)

HPM Process Diagram Sample HPM Process Diagram.png
HPM Process Diagram

Harbarian process modeling (HPM) is a method for obtaining internal process information from an organization and then documenting that information in a visually effective, simple manner.

The HPM method involves two levels:

  1. Process diagrams: High-level overviews of specific processes or workflows.
  2. Systems diagrams: Mapping how each process is correlated, as well as various inputs, outputs, goals, feedback loops, and external factors.

Business Process Execution Language (BPEL)

The Web Services Business Process Execution Language (WS-BPEL), commonly known as BPEL (Business Process Execution Language), is an OASIS [50] standard executable language for specifying actions within business processes with web services. Processes in BPEL export and import information by using web service interfaces exclusively.

Tools

Business process modelling tools provide business users with the ability to model their business processes, implement and execute those models, and refine the models based on as-executed data. As a result, business process modelling tools can provide transparency into business processes, as well as the centralization of corporate business process models and execution metrics. [51] Modelling tools may also enable collaborate modelling of complex processes by users working in teams, where users can share and simulate models collaboratively. [52] Business process modelling tools should not be confused with business process automation systems - both practices have modeling the process as the same initial step and the difference is that process automation gives you an 'executable diagram' and that is drastically different from traditional graphical business process modelling tools.[ citation needed ]

Programming language tools

BPM suite software provides programming interfaces (web services, application program interfaces (APIs)) which allow enterprise applications to be built to leverage the BPM engine. [51] This component is often referenced as the engine of the BPM suite.

Programming languages that are being introduced for BPM include: [53]

Some vendor-specific languages:

Other technologies related to business process modelling include model-driven architecture and service-oriented architecture.

Simulation

The simulation functionality of such tools allows for pre-execution "what-if" modelling (which has particular requirements for this application) and simulation. Post-execution optimization is available based on the analysis of actual as-performed metrics. [51]

Business reference model

Example of the US Federal Government Business Reference Model Government Business Reference Model.svg
Example of the US Federal Government Business Reference Model

A business reference model is a reference model, concentrating on the functional and organizational aspects of an enterprise, service organization, or government agency. In general, a reference model is a model of something that embodies the basic goal or idea of something and can then be looked at as a reference for various purposes. A business reference model is a means to describe the business operations of an organization, independent of the organizational structure that performs them. Other types of business reference models can also depict the relationship between the business processes, business functions, and the business area's business reference model. These reference models can be constructed in layers, and offer a foundation for the analysis of service components, technology, data, and performance.

The most familiar business reference model is the Business Reference Model of the US federal government. That model is a function-driven framework for describing the business operations of the federal government independent of the agencies that perform them. The Business Reference Model provides an organized, hierarchical construct for describing the day-to-day business operations of the federal government. While many models exist for describing organizations – organizational charts, location maps, etc. – this model presents the business using a functionally driven approach. [55]

Business process integration

Example of the interaction between business process and data models Process and data modeling.svg
Example of the interaction between business process and data models

A business model, which may be considered an elaboration of a business process model, typically shows business data and business organizations as well as business processes. By showing business processes and their information flows, a business model allows business stakeholders to define, understand, and validate their business enterprise. The data model part of the business model shows how business information is stored, which is useful for developing software code. See the figure on the right for an example of the interaction between business process models and data models. [56]

Usually, a business model is created after conducting an interview, which is part of the business analysis process. The interview consists of a facilitator asking a series of questions to extract information about the subject business process. The interviewer is referred to as a facilitator to emphasize that it is the participants, not the facilitator, who provide the business process information. Although the facilitator should have some knowledge of the subject business process, but this is not as important as the mastery of a pragmatic and rigorous method interviewing business experts. The method is important because for most enterprises a team of facilitators is needed to collect information across the enterprise, and the findings of all the interviewers must be compiled and integrated once completed. [56]

Business models are developed to define either the current state of the process, resulting in the 'as is' snapshot model, or a vision of what the process should evolve into, leading to a 'to be' model. By comparing and contrasting the 'as is' and 'to be' models, business analysts can determine if existing business processes and information systems require minor modifications or if reengineering is necessary to enhance efficiency. As a result, business process modeling and subsequent analysis can fundamentally reshape the way an enterprise conducts its operations. [56]

Business process re-engineering

Diagram of the business process reengineering cycle Business Process Reengineering Cycle.svg
Diagram of the business process reengineering cycle

Business process reengineering (BPR) aims to improve the efficiency and effectiveness of the processes that exist within and across organizations. It examines business processes from a "clean slate" perspective to determine how best to construct them.

Business process re-engineering (BPR) began as a private sector technique to help organizations fundamentally rethink how they do their work. A key stimulus for re-engineering has been the development and deployment of sophisticated information systems and networks. Leading organizations use this technology to support innovative business processes, rather than refining current ways of doing work. [57]

Business process management

Change management programs are typically involved to put any improved business processes into practice. With advances in software design, the vision of BPM models becoming fully executable (and capable of simulations and round-trip engineering) is coming closer to reality.

Adaptation of process models

In business process management, process flows are regularly reviewed and, if necessary, optimized (adapted). Regardless of whether this adaptation of process flows is triggered by continual improvement process or business process re-engineering, it entails updating individual sub-processes or an entire business process.

See also

Related Research Articles

<span class="mw-page-title-main">Unified Modeling Language</span> Software system design modeling tool

The unified modeling language (UML) is a general-purpose visual modeling language that is intended to provide a standard way to visualize the design of a system.

A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure of a programming language.

<span class="mw-page-title-main">Flowchart</span> Diagram that represents a workflow or process

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

ISO/IEC/IEEE 12207Systems and software engineering – Software life cycle processes is an international standard for software lifecycle processes. First introduced in 1995, it aims to be a primary standard that defines all the processes required for developing and maintaining software systems, including the outcomes and/or activities of each process.

ISO/IEC 15504Information technology – Process assessment, also termed Software Process Improvement and Capability dEtermination (SPICE), is a set of technical standards documents for the computer software development process and related business management functions. It is one of the joint International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standards, which was developed by the ISO and IEC joint subcommittee, ISO/IEC JTC 1/SC 7.

Information technology service management (ITSM) are the activities performed by an organization to design, build, deliver, operate and control IT services offered to customers.

A functional software architecture (FSA) is an architectural model that identifies enterprise functions, interactions and corresponding IT needs. These functions can be used as a reference by different domain experts to develop IT-systems as part of a co-operative information-driven enterprise. In this way, both software engineers and enterprise architects can create an information-driven, integrated organizational environment.

<span class="mw-page-title-main">Information model</span> Software engineering visualization

An information model in software engineering is a representation of concepts and the relationships, constraints, rules, and operations to specify data semantics for a chosen domain of discourse. Typically it specifies relations between kinds of things, but may also include relations with individual things. It can provide sharable, stable, and organized structure of information requirements or knowledge for the domain context.

Object-oriented analysis and design (OOAD) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality.

<span class="mw-page-title-main">Business Process Model and Notation</span> Graphical representation for specifying business processes

Business Process Model and Notation (BPMN) is a graphical representation for specifying business processes in a business process model.

ITIL security management describes the structured fitting of security into an organization. ITIL security management is based on the ISO 27001 standard. "ISO/IEC 27001:2005 covers all types of organizations. ISO/IEC 27001:2005 specifies the requirements for establishing, implementing, operating, monitoring, reviewing, maintaining and improving a documented Information Security Management System within the context of the organization's overall business risks. It specifies requirements for the implementation of security controls customized to the needs of individual organizations or parts thereof. ISO/IEC 27001:2005 is designed to ensure the selection of adequate and proportionate security controls that protect information assets and give confidence to interested parties."

Executable UML is both a software development method and a highly abstract software language. It was described for the first time in 2002 in the book "Executable UML: A Foundation for Model-Driven Architecture". The language "combines a subset of the UML graphical notation with executable semantics and timing rules." The Executable UML method is the successor to the Shlaer–Mellor method.

<span class="mw-page-title-main">Systems modeling language</span> General-purpose modeling language

The systems modeling language (SysML) is a general-purpose modeling language for systems engineering applications. It supports the specification, analysis, design, verification and validation of a broad range of systems and systems-of-systems.

<span class="mw-page-title-main">RM-ODP</span> Reference model in computer science

Reference Model of Open Distributed Processing (RM-ODP) is a reference model in computer science, which provides a co-ordinating framework for the standardization of open distributed processing (ODP). It supports distribution, interworking, platform and technology independence, and portability, together with an enterprise architecture framework for the specification of ODP systems.

Enterprise engineering is the body of knowledge, principles, and practices used to design all or part of an enterprise. An enterprise is a complex socio-technical system that comprises people, information, and technology that interact with each other and their environment in support of a common mission. One definition is: "an enterprise life-cycle oriented discipline for the identification, design, and implementation of enterprises and their continuous evolution", supported by enterprise modelling. The discipline examines each aspect of the enterprise, including business processes, information flows, material flows, and organizational structure. Enterprise engineering may focus on the design of the enterprise as a whole, or on the design and integration of certain business components.

In software engineering, a software development process or software development life cycle (SDLC) is a process of planning and managing software development. It typically involves dividing software development work into smaller, parallel, or sequential steps or sub-processes to improve design and/or product management. The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.

A distribution management system (DMS) is a collection of applications designed to monitor and control the electric power distribution networks efficiently and reliably. It acts as a decision support system to assist the control room and field operating personnel with the monitoring and control of the electric distribution system. Improving the reliability and quality of service in terms of reducing power outages, minimizing outage time, maintaining acceptable frequency and voltage levels are the key deliverables of a DMS. Given the complexity of distribution grids, such systems may involve communication and coordination across multiple components. For example, the control of active loads may require a complex chain of communication through different components as described in US patent 11747849B2

Software architecture description is the set of practices for expressing, communicating and analysing software architectures, and the result of applying such practices through a work product expressing a software architecture.

<span class="mw-page-title-main">Enterprise Architect (software)</span> Visual modeling and design tool

Sparx Systems Enterprise Architect is a visual modeling and design tool based on the OMG UML. The platform supports: the design and construction of software systems; modeling business processes; and modeling industry based domains. It is used by businesses and organizations to not only model the architecture of their systems, but to process the implementation of these models across the full application development life-cycle.

References

  1. 1 2 3 4 Association of Business Process Management Professionals ABPMP (publisher): Guide to the Business Process Management common body of knowledge - BPM CBOK® in the translated and edited German edition of → European Association of Business Process Management EABPM (publisher): Business Process Management Common Body of Knowledge - BPM CBOK®, 2nd version, Verlag Dr. Götz Schmidt, Gießen 2009, ISBN 978-3-921313-80-0
  2. 1 2 3 4 5 6 7 8 9 Hermann J. Schmelzer and Wolfgang Sesselmann: Geschäftsprozessmanagement in der Praxis, 9th edition, Hanser, Munich 2020, ISBN 978-3-446-44625-0
  3. 1 2 3 4 5 6 7 8 Andreas Gadatsch: Management von Geschäftsprozessen / Methoden und Werkzeuge für die IT-Praxis: Eine Einführung für Studenten und Praktiker, 2nd revised and expanded edition, Vieweg, Braunschweig/Wiesbaden 2002, ISBN 978-3-528-15759-3
  4. 1 2 3 4 5 6 7 8 9 10 11 Michael Rosemann, Ansgar Schwegmann and Patrick Delfmann: Vorbereitung der Prozessmodellierung in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 978-3-540-00107-2
  5. Knowledge database: In 6 einfachen Schritten zur Prozesslandkarte, DER PROZESSMANAGER GmbH (last accessed: January 25, 2024)
  6. Jörg Becker and Dieter Kahn: Der Prozess im Fokus in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  7. 1 2 3 4 5 6 7 Jörg Becker and Volker Meise: Strategie und Organisationsrahmen in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  8. 1 2 Mario Speck and Norbert Schnetgöke: Sollmodellierung und Prozessoptimierung in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  9. Thomas Dufresne & James Martin (2003). "Process Modeling for E-Business". INFS 770 Methods for Information Systems Engineering: Knowledge Management and E-Business. Spring 2003 [ dead link ]
  10. Williams, S. (1967) "Business Process Modeling Improves Administrative Control," In: Automation. December 1967, pp. 44 - 50.
  11. 1 2 Asbjørn Rolstadås (1995). "Business process modeling and re-engineering". in: Performance Management: A Business Process Benchmarking Approach. p. 148-150.
  12. Brian C. Warboys (1994). Software Process Technology: Third European Workshop EWSPT'94, Villard de Lans, France, February 7–9, 1994: Proceedings. p. 252.
  13. John Miltenburg, David Sparling: Managing and reducing total cycle time: models and analysis in Elsevier International Journal of Production Economics, December 1996, Pages 89-108
  14. Michael Molter: Die Prozessorientierte Applikationslandschaft in August-W. Scheer, Wolfram Jost and Karl Wagner (publisher): Von Prozessmodellen zu lauffähigen Anwendungen, Springer Berlin, Heidelberg, New York 2005, ISBN 3-540-23457-8
  15. N. Venkat Venkatraman: IT-Induced Business Reconfiguration in M. S. Scott Morton (publisher): The Corporation of the 1990s: Information Technology and Organizational Transformation, 1st edition, Oxford University Press 1991, ISBN 978-0-19-506358-5
  16. Thomas H. Davenport: Process Innovation: Reengineering Work through Information Technology, Harvard Business Press, Boston 1993, ISBN 978-0-87584-366-7
  17. Michael M. Hammer, James A. Champy: Reengineering the Corporation: A Manifesto for Business Revolution, Harper Business, New York 1993, ISBN 978-0-88730-640-2
  18. 1 2 ISO 9001:2015: Quality management systems - Requirements, Fifth edition 2015-09, ISO, the International Organization for Standardization 2015.
  19. ISO 14001:2015: Environmental management systems - Requirements with guidance for use, Third edition 2015-09, ISO, the International Organization for Standardization 2015.
  20. ISO 27001:2022: Information security, cybersecurity and privacy protection Information security management systems - Requirements, Third edition 2022-10, ISO, the International Organization for Standardization 2022.
  21. Martin Kugler: Supply Chain Management und Customer Relationship Management - Prozessmodellierung für Extended Enterprises in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2. corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  22. 1 2 Timo Füermann: Prozessmanagement: Kompaktes Wissen, Konkrete Umsetzung, Praktische Arbeitshilfen, Hanser, München 2014, ISBN 978-3-446-43858-3
  23. 1 2 3 4 Ansgar Schwegmann and Michael Laske: Istmodellierung und Istanalyse in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  24. "ISO - International Organization for Standardization". ISO. 27 May 2024.
  25. August-W. Scheer: ARIS: Von der Vision zur praktischen Geschäftsprozesssteuerung in August-W. Scheer and Wolfram Jost (Hrsg.): ARIS in der Praxis: Gestaltung, Implementierung und Optimierung von Geschäftsprozessen, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-43029-6
  26. Yongchareon, Sira (2015). "A View Framework for Modelling and Change Validation of Artifact-Centric Inter-Organizational Business Processes". Information Systems. 47: 51–81. doi:10.1016/j.is.2014.07.004.
  27. Cedric G. Tyler and Stephen R. Baker: Business Genetics: Understanding 21st Century Corporations using xBML, John Wiley & Sons Ltd, 2007, ISBN 978-0-470-06654-6
  28. "Business Process Improvement". Archived from the original on 2014-01-09. Retrieved 2024-02-19.{{cite web}}: CS1 maint: bot: original URL status unknown (link) accessed February 19, 2024.
  29. Archived (Date missing) at prof-mayr.de (Error: unknown archive URL), auf prof-mayr.de, retrieved 5 February 2024; PDF "VL4030_OMEGA+-Beschreibungsmethode.pdf" nicht mehr verfügbar
  30. OMG. "BPMN 2.0" . Retrieved 2011-03-29.
  31. "About the Business Process Model and Notation Specification Version 2.0.2". www.omg.org. Retrieved 2020-12-07.
  32. <trans oldtip="A.-W. Scheer (2002). " newtip="A.-W.Scheer(2002年)。">A.-W.Scheer(2002年)。</trans><trans oldtip="ARIS. Vom Geschäftsprozess zum Anwendungssystem" newtip="阿里斯。vm Gesch ftsprozess zum Anwendungssystem">阿里斯。vm Gesch ftsprozess zum Anwendungssystem</trans>. Springer. p.20.
  33. Petri, Carl Adam; Reisig, Wolfgang (2008). "Petri net". Scholarpedia . 3 (4): 6477. Bibcode:2008SchpJ...3.6477P. doi: 10.4249/scholarpedia.6477 .
  34. SEVOCAB: Software Systems Engineering Vocabulary. Term: Flow chart. Retrieved 31 July 2008.
  35. IBM Corporation (1974).HIPO—A Design Aid and Documentation Technique, Publication Number GC20-1851, IBM Corporation, White Plains, NY, 1974.
  36. Katzan, Harry Jr. (1976). Systems Design and Documentation: An introduction to the HIPO Method . Van Nostrand Reinhold. ISBN   0-442-24267-0.
  37. Sandia National Laboratories (1992). Sandia Software Guidelines Volume 5 Tools, Techniques, and Methodologies Archived 2009-08-25 at the Wayback Machine SANDIA REPORTS 85–2348qUC–32
  38. LML Steering Committee. "LML Specification" . Retrieved 2023-03-01.
  39. "About Lifecycle Modeling Language". LML Steering Committee. Retrieved 2014-06-05.
  40. Fleischmann, Albert; Stary, Christian (2011). "Whom to talk to? A stakeholder perspective on business process development". Universal Access in the Information Society. 11 (2): 1–28. doi: 10.1007/s10209-011-0236-x .
  41. Sjir Nijssen and André Le Cat. Kennis Gebaseerd Werken], 2009. p. 118-148
  42. Nijssen, Gerardus Maria, and Terence Aidan Halpin. Conceptual Schema and Relational Database Design: a fact oriented approach. Prentice-Hall, Inc., 1989.
  43. Simon, Kerri (26 February 2010). "SIPOC Diagram". Ridgefield, Connecticut: iSixSigma. Retrieved 2012-07-03.
  44. "SIPOC (Suppliers, Inputs, Process, Outputs, Customers) Diagram". Milwaukee, Wisconsin: American Society for Quality . Retrieved 2020-01-29.
  45. Unified Modeling Language 2.5.1. OMG Document Number formal/2017-12-05. Object Management Group Standards Development Organization (OMG SDO). December 2017.
  46. Unified Modeling Language User Guide, The (2 ed.). Addison-Wesley. 2005. p. 496. ISBN   0321267974. See the sample content: look for history
  47. "ISO/IEC 19501:2005 - Information technology - Open Distributed Processing - Unified Modeling Language (UML) Version 1.4.3". Iso.org. 2005-04-01. Retrieved 2015-05-07.
  48. "ISO/IEC 19505-1:2012 - Information technology - Object Management Group Unified Modeling Language (OMG UML) - Part 1: Infrastructure". Iso.org. 2012-04-20. Retrieved 2014-04-10.
  49. Sebastian Baltes; Stephan Diehl (2014-11-11). "Sketches and diagrams in practice". Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. FSE 2014. Association for Computing Machinery. pp. 530–541. arXiv: 1706.09172 . doi:10.1145/2635868.2635891. ISBN   978-1-4503-3056-5. S2CID   2436333.
  50. OASIS Standard WS-BPEL 2.0
  51. 1 2 3 Workflow/Business Process Management (BPM) Service Pattern Archived 2009-01-13 at the Wayback Machine June 27, 2007. Accessed 29 nov 2008.
  52. Christensen, Lars Rune & Thomas Hildebrandt (2017) Modelling Cooperative Work at a Medical Department. Proceedings of the 8th International Conference on Communities and Technologies. Troyes, France. ACM.
  53. "Business Process Modelling FAQ". Archived from the original on 2008-11-09. Retrieved 2008-11-02.
  54. FEA (2005) FEA Records Management Profile, Version 1.0. December 15, 2005.
  55. FEA Consolidated Reference Model Document Archived 2010-10-11 at the Wayback Machine . Oct 2007.
  56. 1 2 3 4 Paul R. Smith & Richard Sarfaty (1993). Creating a strategic plan for configuration management using Computer Aided Software Engineering (CASE) tools. Paper For 1993 National DOE/Contractors and Facilities CAD/CAE User's Group.
  57. Business Process Reengineering Assessment Guide Archived 2017-02-18 at the Wayback Machine , United States General Accounting Office, May 1997.

Further reading

{{|bot=InternetArchiveBot |fix-attempted=yes}}