Chamfer (geometry)

Last updated
Polyhedron 6 unchamfered.png
Polyhedron 6 slightly chamfered.png
Polyhedron chamfered 6 edeq.png
Unchamfered, slightly chamfered, and chamfered cube
Modell, Kristallform Tetraeder-Tetraeder -Krantz 394-.jpg
Modell, Kristallform Wurfel-Rhombendodekaeder -Krantz 428-.jpg
Modell, Kristallform Oktaeder-Rhombendodekaeder -Krantz 432-.jpg
Historical crystal models of slightly chamfered Platonic solids

In geometry, a chamfer or edge-truncation is a topological operator that modifies one polyhedron into another. It separates the faces by reducing them, and adds a new face between each two adjacent faces (moving the vertices inward). Oppositely, similar to expansion, it moves the faces apart outward, and adds a new face between each two adjacent faces; but contrary to expansion, it maintains the original vertices.

Contents

For a polyhedron, this operation adds a new hexagonal face in place of each original edge.

In Conway polyhedron notation, chamfering is represented by the letter "c". A polyhedron with e edges will have a chamfered form containing 2e new vertices, 3e new edges, and e new hexagonal faces.

Platonic solids

Polyhedron chamfered 4a edeq max.png
Polyhedron chamfered 6 edeq max.png
Polyhedron chamfered 8 edeq max.png
Polyhedron chamfered 12 edeq max.png
Polyhedron chamfered 20 edeq max.png
Left to right: chamfered tetrahedron, cube, octahedron, dodecahedron, and icosahedron

Chamfers of five Platonic solids are described in detail below.

Historical drawings of truncated tetrahedron and slightly chamfered tetrahedron. EB1911 Crystallography Figs. 30 & 31.jpg
Historical drawings of truncated tetrahedron and slightly chamfered tetrahedron.
Polyhedron chamfered 12 dual.png
Polyhedron chamfered 20 dual.png
pentakis icosidodecahedron and triakis icosidodecahedron

Regular tilings

Chamfered regular and quasiregular tilings
Tiling 4a simple.svg
Square tiling, Q
{4,4}
Tiling 3 simple.svg
Triangular tiling, Δ
{3,6}
Tiling 6 simple.svg
Hexagonal tiling, H
{6,3}
Tiling 3-6 dual.svg
Rhombille, daH
dr{6,3}
Chamfer square tiling.svg Chamfer triangular tiling.svg Chamfer hexagonal tiling.svg Chamfered rhombille tiling.svg
cQ cH cdaH

Relation to Goldberg polyhedra

The chamfer operation applied in series creates progressively larger polyhedra with new faces, hexagonal, replacing the edges of the current one. The chamfer operator transforms GP(m,n) to GP(2m,2n).

A regular polyhedron, GP(1,0), creates a Goldberg polyhedra sequence: GP(1,0), GP(2,0), GP(4,0), GP(8,0), GP(16,0)...

GP(1,0)GP(2,0)GP(4,0)GP(8,0)GP(16,0)...
GPIV
{4+,3}
Uniform polyhedron-43-t0.svg
C
Truncated rhombic dodecahedron2.png
cC
Octahedral goldberg polyhedron 04 00.svg
ccC
Octahedral goldberg polyhedron 08 00.svg
cccC

ccccC
...
GPV
{5+,3}
Uniform polyhedron-53-t0.svg
D
Truncated rhombic triacontahedron.png
cD
Chamfered chamfered dodecahedron.png
ccD
Chamfered chamfered chamfered dodecahedron.png
cccD
Chamfered chamfered chamfered chamfered dodecahedron.png
ccccD
...
GPVI
{6+,3}
Tiling 6 simple.svg
H
Truncated rhombille tiling.svg
cH
Chamfered chamfered hexagonal tiling.png
ccH

cccH

ccccH
...

The truncated octahedron or truncated icosahedron, GP(1,1), creates a Goldberg sequence: GP(1,1), GP(2,2), GP(4,4), GP(8,8)...

GP(1,1)GP(2,2)GP(4,4)...
GPIV
{4+,3}
Uniform polyhedron-43-t12.svg
tO
Chamfered truncated octahedron.png
ctO
Chamfered chamfered truncated octahedron.png
cctO
...
GPV
{5+,3}
Uniform polyhedron-53-t12.svg
tI
Chamfered truncated icosahedron.png
ctI
Chamfered chamfered truncated icosahedron.png
cctI
...
GPVI
{6+,3}
Uniform tiling 63-t12.svg
Chamfered truncated triangular tiling.svg
ctΔ

cctΔ
...

A truncated tetrakis hexahedron or pentakis dodecahedron, GP(3,0), creates a Goldberg sequence: GP(3,0), GP(6,0), GP(12,0)...

GP(3,0)GP(6,0)GP(12,0)...
GPIV
{4+,3}
Octahedral goldberg polyhedron 03 00.svg
tkC
Octahedral goldberg polyhedron 06 00.svg
ctkC

cctkC
...
GPV
{5+,3}
Conway polyhedron Dk6k5tI.png
tkD
Chamfered truncated pentakis dodecahedron.png
ctkD

cctkD
...
GPVI
{6+,3}
Truncated hexakis hexagonal tiling.png
tkH
Chamfered truncated hexakis hexagonal tiling.svg
ctkH

cctkH
...

See also

References

  1. Spencer 1911, p. 575, or p. 597 on Wikisource, Crystallography, 1. Cubic System, Tetrahedral Class, Figs. 30 & 31.
  2. 1 2 3 4 Deza, Deza & Grishukhin 1998, 3.4.3. Edge truncations.
  3. Gelişgen & Yavuz 2019b, Chamfered Cube Metric and Some Properties.
  4. "TwistyPuzzles.com > Museum > Show Museum Item". twistypuzzles.com. Retrieved 2025-02-09.
  5. Gelişgen & Yavuz 2019b, Chamfered Octahedron Metric and Some Properties.
  6. Gelişgen & Yavuz 2019a.

Sources