A crash simulation is a virtual recreation of a destructive crash test of a car or a highway guard rail system using a computer simulation in order to examine the level of safety of the car and its occupants. Crash simulations are used by automakers during computer-aided engineering (CAE) analysis for crashworthiness in the computer-aided design (CAD) process of modelling new cars. During a crash simulation, the kinetic energy, or energy of motion, that a vehicle has before the impact is transformed into deformation energy, mostly by plastic deformation (plasticity) of the car body material (Body in White), at the end of the impact.
Data obtained from a crash simulation indicate the capability of the car body or guard rail structure to protect the vehicle occupants during a collision (and also pedestrians hit by a car) against injury. Important results are the deformations (for example, steering wheel intrusions) of the occupant space (driver, passengers) and the decelerations (for example, head acceleration) felt by them, which must fall below threshold values fixed in legal car safety regulations. To model real crash tests, today's crash simulations include virtual models of crash test dummies and of passive safety devices (seat belts, airbags, shock absorbing dash boards, etc.). Guide rail tests evaluate vehicle deceleration and rollover potential, as well as penetration of the barrier by vehicles.
In the years 1970 attempts were made to simulate car crash events with non-linear spring-mass systems after calibration, which require as input the results of physical destructive laboratory tests, needed to determine the mechanical crushing behavior of each spring component of the modeled system. "First principle" simulations like more elaborate finite element models, however, need only the definition of the structural geometry and the basic material properties (rheology of car body steel, glass, plastic parts, etc.) as an input to generate the numerical model.
The origins of industrial first principle computerized car crash simulation lies in military defense, outer space, and civil nuclear power plant applications. Upon presentation of a simulation of the accidental crash of a military fighter plane into a nuclear power plant on May 30, 1978, by ESI Group in a meeting organized by the Verein Deutscher Ingenieure (VDI) in Stuttgart, car makers became alerted to the possibility of using this technology for the simulation of destructive car crash tests (Haug 1981).
In the following years, German car makers produced more complex crash simulation studies, simulating the crash behavior of individual car body components, component assemblies, and quarter and half car bodies in white (BIW). These experiments culminated in a joint project by the Forschungsgemeinschaft Automobil-Technik (FAT), a conglomeration of all seven German car makers (Audi, BMW, Ford, Mercedes-Benz, Opel, Porsche, and Volkswagen), which tested the applicability of two emerging commercial crash simulation codes. These simulation codes recreated a frontal impact of a full passenger car structure (Haug 1986) and they ran to completion on a computer overnight. Now that turn-around time between two consecutive job-submissions (computer runs) did not exceed one day, engineers were able to better understand the crash behavior and make efficient and progressive improvements to the analyzed car body structure. Computer-aided engineering (CAE) software became lately a norm in the crash test simulation. The combination of Machine learning and CAE tools allowed a much better acceleration of the simulation software. Engineers used ML to predict:
Crash simulations are used to investigate the safety of the car occupants during impacts on the front end structure of the car in a "head-on collision" or "frontal impact", the lateral structure of the car in a “side collision” or “side impact”, the rear end structure of a car in a "rear-end collision" or “rear impact”, and the roof structure of the car when it overturns during a "rollover". Crash simulations can also be used to assess injury to pedestrians hit by a car.
A crash simulation produces results without actual destructive testing of a new car model. This way, tests can be performed quickly and inexpensively in a computer, which permits optimization of the design before a real prototype of the car has been manufactured. Using a simulation, problems can be solved before spending time and money on an actual crash test. The great flexibility of printed output and graphical display enables designers to solve some problems that would have been nearly impossible without the help of a computer.
Large number of crash simulations use a method of analysis called the Finite Element Method. The complex problems are solved by dividing a surface into a large but still finite number of elements and determining the motion of these elements over very small periods of time. Another approach to crash simulations is performed by application of Macro Element Method. The difference between two mentioned above methodologies is that the structure in case of Macro Element Method consists of smaller number of elements. The calculation algorithm of structure deformation is based on experimental data rather than calculated from partial differential equations.
Pam-Crash started crash simulation and together with LS-DYNA is a software package which is widely used for application of Finite Element Method. This method allows detailed modeling of a structure, but the disadvantage lies in high processing unit requirements and calculation time. The Visual Crash Studio uses Macro Element Methodology. In comparison with FEM it has some modeling and boundary condition limitations but its application does not require advanced computers and the calculation time is incomparably smaller. Two presented methods complement each other. Macro Element Method is useful at early stage of the structure design process while Finite Element Method performs well at its final stages.
In a typical crash simulation, the car body structure is analyzed using spatial discretization, that is, breaking up the continuous movement of the body in real time into smaller changes in position over small, discrete time steps. The discretization involves subdividing the surface of the constituent, thin, sheet metal parts into a large number (approaching one million in 2006) of quadrilateral or triangular regions, each of which spans the area between "nodes" to which its corners are fixed. Each element has mass, which is distributed as concentrated masses and as mass moments of inertia to its connecting nodes. Each node has 6 kinematic degrees of freedom, that is, one node can move in three linear directions under translation and can rotate about three independent axes. The spatial coordinates (x), displacement (u), velocity (v), and acceleration (a) of each node is mostly expressed in a three-dimensional rectangular Cartesian coordinate system with axes X,Y, and Z.
If the nodes move during a crash simulation, the connected elements move, stretch, and bend with their nodes, which causes them to impart forces and moments to their nodal connections. The forces and moments at the nodes correspond to the inertia forces and moments, caused by their translational (linear) and angular accelerations and to the forces and moments transmitted by the resistance of the structural material of the connected elements as they deform. Sometimes, additional external structural loads are applied, like gravity loads from the self weight of the parts, or added loads from external masses.
The forces and moments of all nodes are collected into a column vector (or column matrix), and the time dependent equations of motion (in dynamic equilibrium) can be written as follows.
where vector (mass times acceleration vector) collects the inertia forces at the nodes, collects the external nodal loads, and collects the internal resisting forces from the deformation of the material. M is a diagonal matrix of the nodal masses. Each vector (u, v, a, F, etc.) has dimension 6 times the total number of nodes in the crash model (about 6 million “degrees of freedom” for every 1 million "nodes" in 3-D thin shell finite element models).
A crash simulation uses time discretization as well to separate the continuous changes in time into very small, usable segments. The dynamic equations of motion hold at all times during a crash simulation and must be integrated in time, t, starting from an initial condition at time zero, which is just prior to the crash. According to the explicit finite difference time integration method used by most crash codes, the accelerations, velocities, and displacements of the body are related by the following equations.
In these equations the subscripts n±1/2, n, n+1 denote past, present, and future times, t, at half and full-time intervals with time steps and , respectively.
The above system of linear equations is solved for the accelerations, , the velocities, , and the displacements, , at each discrete point in time, t, during the crash duration. This solution is trivial, since the mass matrix is diagonal. The computer time is proportional to the number of finite elements and the number of solution time steps. The stable solution time step, , is limited for numerical stability, as expressed by the Courant–Friedrichs–Lewy condition (CFL), which states that “in any time-marching computer simulation, the time step must be less than the time for some significant action to occur, and preferably considerably less." In a crash simulation, the fastest significant actions are the acoustic signals that travel inside the structural material.
The solid elastic stress wave speed amounts to
where is the initial elastic modulus (before plastic deformation) of the material and is the mass density. The largest stable time step for a given material is therefore
where is the smallest distance between any two nodes of the numerical crash simulation model.
Since this distance can change during a simulation, the stable time step changes and must be updated continually as the solution proceeds in time. When using steel, the typical value of the stable time step is about one microsecond when the smallest discrete node distance in the mesh of the finite element model is about 5 millimeters. It needs then more than 100,000 time intervals to solve a crash event that lasts for one tenth of a second. This figure is exceeded in many industrial crash models demanding optimized crash solvers with High-Performance Computing (HPC) features, such as vectorization and parallel computing.
Crumple zones, crush zones, or crash zones are a structural safety feature used in vehicles, mainly in automobiles, to increase the time over which a change in velocity occurs from the impact during a collision by a controlled deformation; in recent years, it is also incorporated into trains and railcars.
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.
The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many computational fluid dynamics packages. "Finite volume" refers to the small volume surrounding each node point on a mesh.
In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.
Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Jean Baptiste Delambre and has been rediscovered many times since then, most recently by Loup Verlet in the 1960s for use in molecular dynamics. It was also used by P. H. Cowell and A. C. C. Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the trajectories of electrical particles in a magnetic field . The Verlet integrator provides good numerical stability, as well as other properties that are important in physical systems such as time reversibility and preservation of the symplectic form on phase space, at no significant additional computational cost over the simple Euler method.
Level-set methods (LSM) are a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. The advantage of the level-set model is that one can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects. Also, the level-set method makes it very easy to follow shapes that change topology, for example, when a shape splits in two, develops holes, or the reverse of these operations. All these make the level-set method a great tool for modeling time-varying objects, like inflation of an airbag, or a drop of oil floating in water.
Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.
As one of the methods of structural analysis, the direct stiffness method, also known as the matrix stiffness method, is particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the nodes. The material stiffness properties of these elements are then, through matrix mathematics, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software.
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at discrete points called nodes. Elements may have physical properties such as thickness, coefficient of thermal expansion, density, Young's modulus, shear modulus and Poisson's ratio.
Soft-body dynamics is a field of computer graphics that focuses on visually realistic physical simulations of the motion and properties of deformable objects. The applications are mostly in video games and films. Unlike in simulation of rigid bodies, the shape of soft bodies can change, meaning that the relative distance of two points on the object is not fixed. While the relative distances of points are not fixed, the body is expected to retain its shape to some degree. The scope of soft body dynamics is quite broad, including simulation of soft organic materials such as muscle, fat, hair and vegetation, as well as other deformable materials such as clothing and fabric. Generally, these methods only provide visually plausible emulations rather than accurate scientific/engineering simulations, though there is some crossover with scientific methods, particularly in the case of finite element simulations. Several physics engines currently provide software for soft-body simulation.
Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc., will lead to different results that can only be predicted in a statistical sense.
A shear band is a narrow zone of intense shearing strain, usually of plastic nature, developing during severe deformation of ductile materials. As an example, a soil specimen is shown in Fig. 1, after an axialsymmetric compression test. Initially the sample was cylindrical in shape and, since symmetry was tried to be preserved during the test, the cylindrical shape was maintained for a while during the test and the deformation was homogeneous, but at extreme loading two X-shaped shear bands had formed and the subsequent deformation was strongly localized.
The material point method (MPM) is a numerical technique used to simulate the behavior of solids, liquids, gases, and any other continuum material. Especially, it is a robust spatial discretization method for simulating multi-phase (solid-fluid-gas) interactions. In the MPM, a continuum body is described by a number of small Lagrangian elements referred to as 'material points'. These material points are surrounded by a background mesh/grid that is used to calculate terms such as the deformation gradient. Unlike other mesh-based methods like the finite element method, finite volume method or finite difference method, the MPM is not a mesh based method and is instead categorized as a meshless/meshfree or continuum-based particle method, examples of which are smoothed particle hydrodynamics and peridynamics. Despite the presence of a background mesh, the MPM does not encounter the drawbacks of mesh-based methods which makes it a promising and powerful tool in computational mechanics.
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.
Lipid bilayer mechanics is the study of the physical material properties of lipid bilayers, classifying bilayer behavior with stress and strain rather than biochemical interactions. Local point deformations such as membrane protein interactions are typically modelled with the complex theory of biological liquid crystals but the mechanical properties of a homogeneous bilayer are often characterized in terms of only three mechanical elastic moduli: the area expansion modulus Ka, a bending modulus Kb and an edge energy . For fluid bilayers the shear modulus is by definition zero, as the free rearrangement of molecules within plane means that the structure will not support shear stresses. These mechanical properties affect several membrane-mediated biological processes. In particular, the values of Ka and Kb affect the ability of proteins and small molecules to insert into the bilayer. Bilayer mechanical properties have also been shown to alter the function of mechanically activated ion channels.
Pam-Crash is a software package from ESI Group used for crash simulation and the design of occupant safety systems, primarily in the automotive industry. The software enables automotive engineers to simulate the performance of a proposed vehicle design and evaluate the potential for injury to occupants in multiple crash scenarios.
In geology, numerical modeling is a widely applied technique to tackle complex geological problems by computational simulation of geological scenarios.