Difenoxuron

Last updated
Difenoxuron
Difenoxuron.svg
Names
IUPAC name
3-[4-(4-Methoxyphenoxy)phenyl]-1,1-dimethylurea
Other names
N′-[4-(4-methoxyphenoxy)phenyl]-N,N-dimethylurea
Lironion
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.592 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 238-068-0
PubChem CID
UNII
  • InChI=1S/C16H18N2O3/c1-18(2)16(19)17-12-4-6-14(7-5-12)21-15-10-8-13(20-3)9-11-15/h4-11H,1-3H3,(H,17,19)
    Key: AMVYOVYGIJXTQB-UHFFFAOYSA-N
  • CN(C)C(=O)NC1=CC=C(C=C1)OC2=CC=C(C=C2)OC
Properties
C16H18N2O3
Molar mass 286.331 g·mol−1
AppearanceSolid powder [1]
Solubility Soluble in acetone
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Lethal dose or concentration (LD, LC):
>7750 mg/kg (rat, oral)
>2150 mg/kg (rat, dermal) [2]
Safety data sheet (SDS) http://cdn.chemservice.com/product/msdsnew/External/English/N-12977%20English%20SDS%20US.pdf
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Difenoxuron (commercially known as Lironion) is a phenylurea herbicide used to control annual broad-leaved weeds and grasses in allium crops (predominantly onions), [3] [4] carrots, jojoba, and celery. [5] [6] [7]

Contents

Production

Difenoxuron may be synthesized from 4-chloroaniline, 4-methoxyphenol, dimethylamine, and phosgene. [8] It is stereochemically achiral. [9]

Mechanism of action

Difenoxuron is a member of the phenylurea class of herbicides. Phenylureas inhibit photosynthesis at photosystem II by binding to the serine 264 residue of the D1 protein, occupying the Qb (secondary plastoquinone) binding site and hence halting electron transfer from the primary acceptor Qa to the secondary acceptor Qb. [10] This prevents CO2 fixation and energy production. [11] Moreover, this blockade prevents chlorophyll from transferring energy to Qa, increasing production of triplet-state chlorophyll, which reacts with molecular oxygen to form singlet oxygen, a highly reactive species that oxidatively damages the pigments, lipids and proteins of the photosynthetic thylakoid membrane. [11]

Herbicidal activity

Liming in Boddington soil has been shown by a 1976 study to increase the herbicidal toxicity of difenoxuron by two to three times compared to soil without the additional level of liming. [12]

Toxicology

Difenoxuron's hazards include acute toxicity caused by oral ingestion, and acute toxicity of inhalation. There are very few studies about the genotoxicity of difenoxuron and these studies are inconcordant but there appears to be a dose dependent relationship between the concentration of difenoxuron and rate of observed chromosomal aberrations. [4]

Related Research Articles

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by three to six times from 1900 to 2000.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). Glyphosate-based herbicides are used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Paraquat</span> Chemical compound used as an herbicide

Paraquat (trivial name; ), or N,N′-dimethyl-4,4′-bipyridinium dichloride (systematic name), also known as methyl viologen, is a toxic organic compound with the chemical formula [(C6H7N)2]Cl2. It is classified as a viologen, a family of redox-active heterocycles of similar structure. This salt is one of the most widely used herbicides worldwide. It is quick-acting and non-selective, killing green plant tissue on contact.

<span class="mw-page-title-main">Agrochemical</span> Any chemical used in agriculture

An agrochemical or agrichemical, a contraction of agricultural chemical, is a chemical product used in industrial agriculture. Agrichemical typically refers to biocides alongside synthetic fertilizers. It may also include hormones and other chemical growth agents. Though the application of mineral fertilizers and pesticidal chemicals has a long history, the majority of agricultural chemicals were developed from the 19th century, and their use were expanded significantly during the Green Revolution and the late 20th century. Agriculture that uses these chemicals is frequently called conventional agriculture.

<span class="mw-page-title-main">MCPA</span> Organic compound used as an herbicide

MCPA is a widely used phenoxy herbicide introduced in 1945. It selectively controls broad-leaf weeds in pasture and cereal crops. The mode of action of MCPA is as an auxin, which are growth hormones that naturally exist in plants.

<span class="mw-page-title-main">Diquat</span> Chemical compound

Diquat is the ISO common name for an organic dication that, as a salt with counterions such as bromide or chloride is used as a contact herbicide that produces desiccation and defoliation. Diquat is no longer approved for use in the European Union, although its registration in many other countries including the USA is still valid.

<span class="mw-page-title-main">Hexazinone</span> Chemical compound

Hexazinone is an organic compound that is used as a broad spectrum herbicide. It is a colorless solid. It exhibits some solubility in water but is highly soluble in most organic solvents except alkanes. A member of the triazine class herbicides, it is manufactured by DuPont and sold under the trade name Velpar.

<span class="mw-page-title-main">Chlortoluron</span> Chemical compound

Chlortoluron, chlorotoluron and CTU are the common names for an organic compound of the phenylurea class of herbicides used to control broadleaf and annual grass weeds in cereal crops.

<span class="mw-page-title-main">Glufosinate</span> Broad-spectrum herbicide

Glufosinate is a naturally occurring broad-spectrum herbicide produced by several species of Streptomyces soil bacteria. Glufosinate is a non-selective, contact herbicide, with some systemic action. Plants may also metabolize bialaphos and phosalacine, other naturally occurring herbicides, directly into glufosinate. The compound irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification, giving it antibacterial, antifungal and herbicidal properties. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis and resulting in plant death.

<span class="mw-page-title-main">Sulfentrazone</span> Chemical compound

Sulfentrazone is the ISO common name for an organic compound used as a broad-spectrum herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase. It was first marketed in the US in 1997 by FMC Corporation with the brand name Authority.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

<span class="mw-page-title-main">Dinoseb</span> Chemical compound used as a herbicide

Dinoseb is a common industry name for 6-sec-butyl-2,4-dinitrophenol, a herbicide in the dinitrophenol family. It is a crystalline orange solid which does not readily dissolve in water. Dinoseb is banned as an herbicide in the European Union (EU) and the United States because of its toxicity.

<span class="mw-page-title-main">Trifluralin</span> Weed control herbicide

Trifluralin is a common pre-emergent selective herbicide, a dinitroaniline. With about 14 million pounds (6,400 t) used in the United States in 2001, and 3–7 million pounds (1,400–3,200 t) in 2012, it is one of the most widely used herbicides. Trifluralin is also used in Australia, and New Zealand, previously in the EU. Introduced in 1964, Trifluralin was the first organofluorine compound used as an agrochemical.

<span class="mw-page-title-main">Tenuazonic acid</span> Chemical compound

Tenuazonic acid is a mycotoxin produced by Alternaria species. It is a powerful eukaryotic protein synthesis inhibitor. It is a tetrameric acid that is ubiquitous in biological environments and prevents the release of newly synthesized protein from the ribosome. Its toxicity is the highest among all Alternaria mycotoxins and has both phytotoxic and cytotoxic properties. In 1991 Tenuazonic acid was reported to inhibit skin tumor promotion in mice.

<span class="mw-page-title-main">Imazaquin</span> Chemical compound

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.

<span class="mw-page-title-main">Linuron</span> Chemical compound

Linuron is a phenylurea herbicide that is used to control the growth of grass and weeds for the purpose of supporting the growth of crops like soybeans.

Glyphosate-based herbicides are herbicides made of a glyphosate salt usually combined with other ingredients needed to stabilize the formula and allow penetration into plants. Roundup was the first glyphosate-based herbicide, developed by Monsanto in the 1970s. It is used most heavily on corn, soy, and cotton crops that have been genetically modified to be resistant to the herbicide. Some products include two active ingredients, such as Enlist Duo which includes 2,4-D as well as glyphosate. As of 2010, more than 750 glyphosate products were on the market. The names of inert ingredients used in glyphosate formulations are usually not listed on the product labels.

<span class="mw-page-title-main">Fomesafen</span> PPOi herbicide

Fomesafen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase (PPO) which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to fomesafen, via metabolic disposal by glutathione S-transferase. As a result, soy is the most common crop treated with fomesafen, followed by other beans and a few other crop types. It is not safe for maize/corn or other Poaceae.

<span class="mw-page-title-main">Fluazifop</span> ACCase herbicide, fop, anti-grass

Fluazifop is the common name used by the ISO for an organic compound that is used as a selective herbicide. The active ingredient is the 2R enantiomer at its chiral centre and this material is known as fluazifop-P when used in that form. More commonly, it is sold as its butyl ester, fluazifop-P butyl with the brand name Fusilade.

<span class="mw-page-title-main">Butafenacil</span> Chemical compound

Butafenacil is the ISO common name for an organic compound of the pyrimidinedione chemical class used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase to control broadleaf and some grass weeds in crops including cereals and canola.

References

  1. "Difenoxuron featured". MedKoo Biosciences, Inc. Retrieved 20 November 2024.
  2. "Difenoxuron". Grainews.
  3. Kidd H, James DR, eds. (1990). European Directory of Agrochemical Products. Vol. 2: Herbicides (4th ed.). Cambridge: Royal Society of Chemistry. p. 315. ISBN   9780851869438.
  4. 1 2 Federico, Concetta; Motta, Salvatore; Palmieri, Cristina; Pappalardo, Matteo; Librando, Vito; Saccone, Salvatore (18 March 2011). "Phenylurea herbicides induce cytogenetic effects in Chinese hamster cell lines". Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 721 (1): 89–94. Bibcode:2011MRGTE.721...89F. doi:10.1016/j.mrgentox.2010.12.013. PMID   21238602.
  5. "difenoxuron data sheet". British Crop Production Council .
  6. "Difenoxuron". www.chemservice.com.
  7. "IMTRADE LINURON 800 WG HERBICIDE" (PDF). Retrieved 20 November 2024.
  8. Unger, Thomas A. (1996). Pesticide Synthesis Handbook. Norwich: William Andrew. p. 225. ISBN   9780815518532.
  9. "GSRS". gsrs.ncats.nih.gov.
  10. Pesticides: Updates on Toxicity, Efficacy and Risk Assessment. IntechOpen. 2022. p. 9. ISBN   9781803560380.
  11. 1 2 Roberts TR, Hutson DH, Lee PW, Nicholls PH, Plimmer JR, Roberts MC, Croucher L, eds. (2007). "Ureas". Metabolic Pathways of Agrochemicals: Part 1: Herbicides and Plant Growth Regulators (1st ed.). Cambridge: Royal Society of Chemistry. pp. 705–772. doi:10.1039/9781847551382-00705. ISBN   9780854044948.
  12. Richardson, W. G.; Banting, J. D. (June 1977). "The phytotoxicity of various herbicides in two sandy loam soils and the effect of liming". Weed Research. 17 (3): 203–207. Bibcode:1977WeedR..17..203R. doi:10.1111/j.1365-3180.1977.tb00467.x.