Pendimethalin

Last updated
Pendimethalin [1]
Pendimethalin v2.svg
Names
Preferred IUPAC name
3,4-Dimethyl-2,6-dinitro-N-(pentan-3-yl)aniline
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.049.927 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 254-938-2
KEGG
PubChem CID
UNII
UN number 3077 2588
  • InChI=1S/C13H19N3O4/c1-5-10(6-2)14-12-11(15(17)18)7-8(3)9(4)13(12)16(19)20/h7,10,14H,5-6H2,1-4H3 X mark.svgN
    Key: CHIFOSRWCNZCFN-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C13H19N3O4/c1-5-10(6-2)14-12-11(15(17)18)7-8(3)9(4)13(12)16(19)20/h7,10,14H,5-6H2,1-4H3
    Key: CHIFOSRWCNZCFN-UHFFFAOYAS
  • CCC(CC)Nc1c([N+](=O)[O-])cc(C)c(C)c1[N+](=O)[O-]
Properties
C13H19N3O4
Molar mass 281.312 g·mol−1
Density 1.17 g/cm3
Melting point 47 to 58 °C (117 to 136 °F; 320 to 331 K)
Boiling point 330 °C (626 °F; 603 K)
0.275 ppm
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H317, H410
P261, P272, P273, P280, P302+P352, P321, P333+P313, P363, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Pendimethalin is an herbicide of the dinitroaniline class [2] used in premergence and postemergence applications to control annual grasses and certain broadleaf weeds. It inhibits cell division and cell elongation. Pendimethalin is listed in the K1-group according to the Herbicide Resistance Action Committee (HRAC) classification and is approved in Europe, North America, South America, Africa, Asia and Oceania for different crops including cereals (wheat, barley, rye, triticale), corn, soybeans, rice, potato, legumes, fruits, vegetables, nuts as well as lawns and ornamental plants.

Contents

Use

Pendimethalin protects crops like wheat, corn, soybeans, potatoes, cabbage, peas, carrots, and asparagus. It is used to control annual grasses and certain broadleaf weeds which interfere with growth, development, yield and quality of agricultural and horticultural crops by competing on nutrients, water and light.

In areas where weed infestation is particularly high, yield losses can render wheat production economically unviable. [3] In addition to wheat, a large number of crops are grown in Europe that are a relatively small percentage of total agricultural output. Herbicide options are limited for these minor crops, with few effective herbicides available in the vegetable sector. [4] Long-term field studies performed in Germany by governmental research and advisory institutes together with farmers rank Pendimethalin as an efficient herbicide to control blackgrass, regarding to weed control efficacy, crop yield, treatment costs and environmental impact. [5] [6] [7]

Mode of action

Pendimethalin acts both pre-emergence, that is before weed seedlings have emerged, and early post-emergence. Pendimethalin inhibits root and shoot growth. It controls the weed population and prevents weeds from emerging, particularly during the crucial development phase of the crop. Its primary mode of action is to prevent plant cell division and elongation in susceptible species. In the HRAC classification of herbicides according their mode of action, pendimethalin is listed in group K1.

Risk factor for developing pancreatic cancer

In a study, published in the International Journal of Cancer, it has been suggested that Pendimethalin exposure is associated with higher incidence of pancreatic cancer. [8] Mechanistic studies linking Pendimethalin exposure to higher incidence of pancreatic cancer are however still lacking, warranting for additional studies.

Resistance

Herbicide resistance typically increases production costs and limits options for herbicide selection, cultivations and rotations. Up to 2009 Pendimethalin did not show resistance. It is not cross-resistant with other grass weed herbicides. This means that Pendimethalin supports the effects of other supplementary grass weed herbicides that use a different mode of action. [9] Lolium rigidum has evolved resistance to pendimethalin, at least in part due to increased cytochrome P450 activity. [2]

Registrative status

Pendimethalin is registered globally for a wide range of crops, according to human and environmental safety standards by the European Commission, US-EPA, Canada-PMRA, Japan, Brazil-ANVISA and others.

Tradenames

Tradenames include Satellite, Halts, Prowl, PRE-M, Stomp, Stealth and Pendulum, Hilpendi etc.

Related Research Articles

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by 3x to 6x from 1900 to 2000.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Weed control</span> Botanical component of pest control for plants

Weed control is a type of pest control, which attempts to stop or reduce growth of weeds, especially noxious weeds, with the aim of reducing their competition with desired flora and fauna including domesticated plants and livestock, and in natural settings preventing non native species competing with native species.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). It is used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Its herbicidal effectiveness was discovered by Monsanto chemist John E. Franz in 1970. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Alachlor</span> Chemical compound; herbicide

Alachlor is an herbicide from the chloroacetanilide family. It is an odorless, white solid. The greatest use of alachlor is for control of annual grasses and broadleaf weeds in crops. Use of alachlor is illegal in the European Union and no products containing alachlor are currently registered in the United States.

<i>Avena sterilis</i> Species of grass

Avena sterilis is a species of grass weed whose seeds are edible. Many common names of this plant refer to the movement of its panicle in the wind.

<span class="mw-page-title-main">Glufosinate</span> Broad-spectrum herbicide

Glufosinate is a naturally occurring broad-spectrum herbicide produced by several species of Streptomyces soil bacteria. Glufosinate is a non-selective, contact herbicide, with some systemic action. Plants may also metabolize bialaphos and phosalacine, other naturally occurring herbicides, directly into glufosinate. The compound irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification, giving it antibacterial, antifungal and herbicidal properties. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis and resulting in plant death.

<span class="mw-page-title-main">Dicamba</span> Chemical compound used as herbicide

Dicamba is a selective systemic herbicide first registered in 1967. Brand names for formulations of this herbicide include Dianat, Banvel, Diablo, Oracle and Vanquish. This chemical compound is a chlorinated derivative of o-anisic acid. It has been described as a "widely used, low-cost, environmentally friendly herbicide that does not persist in soils and shows little or no toxicity to wildlife and humans."

<span class="mw-page-title-main">Mesotrione</span> Chemical compound used as an herbicide

Mesotrione is a selective herbicide used mainly in maize crops. It is a synthetic compound inspired by the natural substance leptospermone found in the bottlebrush tree Callistemon citrinus. It inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) and is sold under brand names including Callisto and Tenacity. It was first marketed by Syngenta in 2001.

<span class="mw-page-title-main">2,4-Dichlorophenoxyacetic acid</span> Herbicide

2,4-Dichlorophenoxyacetic acid is an organic compound with the chemical formula Cl2C6H3OCH2CO2H. It is usually referred to by its ISO common name 2,4-D. It is a systemic herbicide that kills most broadleaf weeds by causing uncontrolled growth, but most grasses such as cereals, lawn turf, and grassland are relatively unaffected.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are a class of herbicides that prevent growth in plants by blocking 4-Hydroxyphenylpyruvate dioxygenase, an enzyme in plants that breaks down the amino acid tyrosine into molecules that are then used by plants to create other molecules that plants need. This process of breakdown, or catabolism, and making new molecules from the results, or biosynthesis, is something all living things do. HPPD inhibitors were first brought to market in 1980, although their mechanism of action was not understood until the late 1990s. They were originally used primarily in Japan in rice production, but since the late 1990s have been used in Europe and North America for corn, soybeans, and cereals, and since the 2000s have become more important as weeds have become resistant to glyphosate and other herbicides. Genetically modified crops are under development that include resistance to HPPD inhibitors. There is a pharmaceutical drug on the market, nitisinone, that was originally under development as an herbicide as a member of this class, and is used to treat an orphan disease, type I tyrosinemia.

<span class="mw-page-title-main">Quinclorac</span> Herbicide, synthetix auxin

Quinclorac is an organic compound with the formula {C9NH4Cl2CO2H. A colorless solid, it is soluble in hydrocarbons and alcohols. The compound is a derivative of quinoline.

<span class="mw-page-title-main">Jonathan Gressel</span>

Jonathan Gressel is an Israeli agricultural scientist and Professor Emeritus at the Weizmann Institute of Science in Rehovot, Israel. Gressel is a "strong proponent of using modern genetic techniques to improve agriculture" especially in third world and developing countries such as Africa. In 2010, Gressel received Israel's highest civilian award, the Israel Prize, for his work in agriculture.

<span class="mw-page-title-main">Pyroxasulfone</span> Chemical compound

Pyroxasulfone is a pre-emergence herbicide that inhibits the production of very long chain fatty acids in plants. The structure of the existing herbicide thiobencarb served as the basis for development but pyroxasulfone requires a lower dose (100–25 g/ha) and is more stable resulting in longer efficacy. As of 2016 it had been registered for use in Japan, Australia, USA, Canada, Saudi Arabia and South Africa and was used on crops including maize, soybean, wheat and cotton. In 2015 it was applied to over 6 million hectares of land. Pyroxasulfone is from a novel chemical class but has a similar mode of action to acetamide herbicides such as metolachlor, acetochlor and dimethenamid. It is mainly used to control annual grasses but is also effective against broadleaf weeds including lambsquarters, pigweed and waterhemp and black nightshade

<span class="mw-page-title-main">Fluazifop</span> ACCase herbicide, fop, anti-grass

Fluazifop is the common name used by the ISO for an organic compound that is used as a selective herbicide. The active ingredient is the 2R enantiomer at its chiral centre and this material is known as fluazifop-P when used in that form. More commonly, it is sold as its butyl ester, fluazifop-P butyl with the brand name Fusilade.

<span class="mw-page-title-main">Indaziflam</span> Preemergent herbicide discovered in 2009

Indaziflam is a preemergent herbicide especially for grass control in tree and bush crops.

<span class="mw-page-title-main">Aclonifen</span> Chemical compound

Aclonifen is a diphenyl ether herbicide which has been used in agriculture since the 1980s. Its mode of action has been uncertain, with evidence suggesting it might interfere with carotenoid biosynthesis or inhibit the enzyme protoporphyrinogen oxidase (PPO). Both mechanisms could result in the observed whole-plant effect of bleaching and the compound includes chemical features that are known to result in PPO effects, as seen with acifluorfen, for example. In 2020, further research revealed that aclonifen has a different and novel mode of action, targeting solanesyl diphosphate synthase which would also cause bleaching.

<span class="mw-page-title-main">Sethoxydim</span> Chemical compound

Sethoxydim is a postemergent herbicide for control of grass weeds in a wide variety of horticultural crops.

<span class="mw-page-title-main">Tribenuron</span> Chemical compound

Tribenuron in the form of tribenuron-methyl is a sulfonylurea herbicide. Its mode of action is the inhibition of acetolactate synthase, group 2 of the Herbicide Resistance Action Committee's classification scheme.

<span class="mw-page-title-main">Chlorsulfuron</span> ALS inhibitor herbicide

Chlorsulfuron is an ALS inhibitor herbicide, and is a sulfonylurea compound. It was discovered by George Levitt in February 1976 while working at DuPont, which was the patent assignee.

References

  1. EXTOXNET
  2. 1 2 Powles, Stephen B.; Yu, Qin (2010-06-02). "Evolution in Action: Plants Resistant to Herbicides". Annual Review of Plant Biology . Annual Reviews. 61 (1): 317–347. doi:10.1146/annurev-arplant-042809-112119. ISSN   1543-5008. PMID   20192743. p. 328
  3. Clarke, Wynn, Twinning, Berry, Cook, Ellis and Gladders Pesticide availability for cereals and oilseeds following revision of Directive 91/414/EEC; effects of losses and new research priorities. In: HGCA Research Review. Nr. 70, 2009.
  4. Little J.: EU´s pesticide regulation must be challenged. In: FarmBusiness. 2009 S. 26–27.
  5. Gehring, K. and S. Thyssen: Unkrautmanagement im Getreidebau – Herbizid-Leistungszahl – eine mehrfaktorielle Bewertung von Herbizidbehandlungen. LFL Pflanzenschutz. Institut für Pflanzenschutz der Bayerischen Landesanstalt für Landwirtschaft. In: Freising-Weihestephan, Deutschland. 2004.
  6. Gehring, K. and S. Thyssen: Unkrautmanagement im Getreidebau – Herbizid-Leistungszahl – eine mehrfaktorielle Bewertung von Herbizidbehandlungen. LFL Pflanzenschutz. Institut für Pflanzenschutz der Bayerischen Landesanstalt für Landwirtschaft. In: Freising-Weihestephan, Deutschland. 2007.
  7. Gehring, K.: Ackerfuchschwanz und Windhalm – die zwei bedeutendsten Ungräser im Getreidebau. In: Getreide Magazin. Nr. 1, 2009, S. 20-25.
  8. Andreotti, Gabriella; Freeman, Laura E. Beane; Hou, Lifang; Coble, Joseph; Rusiecki, Jennifer; Hoppin, Jane A.; Silverman, Debra T.; Alavanja, Michael C. R. (2009-05-15). "Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study Cohort". International Journal of Cancer. 124 (10): 2495–2500. doi:10.1002/ijc.24185. ISSN   1097-0215. PMC   2674312 . PMID   19142867.
  9. Moss, S. R. and R. Hull: The value of pre-emergence herbicides for combating herbicide-resistant Alopecurus myosuroides (blackgrass). In: Aspects of Applied Biology. Nr. 91, 2009.