EHMT1

Last updated
EHMT1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases EHMT1 , EUHMTASE1, Eu-HMTase1, FP13812, GLP, GLP1, KMT1D, bA188C12.1, euchromatic histone lysine methyltransferase 1, EHMT1-IT1, KLEFS1
External IDs OMIM: 607001 MGI: 1924933 HomoloGene: 11698 GeneCards: EHMT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001012518
NM_001109686
NM_001109687
NM_172545

RefSeq (protein)

NP_001012536
NP_001103156
NP_001103157
NP_766133

Location (UCSC) Chr 9: 137.62 – 137.87 Mb Chr 2: 24.79 – 24.92 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Euchromatic histone-lysine N-methyltransferase 1, also known as G9a-like protein (GLP), is a protein that in humans is encoded by the EHMT1 gene. [5]

Structure

EHMT1 messenger RNA is alternatively spliced to produce three predicted protein isoforms. Starting from the N-terminus, the canonical isoform one has eight ankyrin repeats, a pre-SET, and a SET domains. Isoforms two and three have missing or incomplete C-terminal SET domains respectively. [6]

Function

G9A-like protein (GLP) shares an evolutionary conserved SET domain with G9A, responsible for methyltransferase activity. [7] The SET domain primarily functions to establish and maintain H3K9 mono and di-methylation, a marker of faculative heterochromatin. [7] [8] When transiently over expressed, G9A and GLP form homo- and heterodimers via their SET domain. [9] However, endogenously both enzymes function exclusively as a heteromeric complex. [9] Although G9A and GLP can exert their methyltransferase activities independently in vitro, if either G9a or Glp are knocked out in vivo, global levels of H3K9me2 are severely reduced and are equivalent to H3K9me2 levels in G9a and Glp double knockout mice. [7] Therefore, it is thought that G9A cannot compensate for the loss of GLP methyltransferase activity in vivo, and vice versa. [7] Another important functional domain, which G9A and GLP both share, is a region containing ankryin repeats, which is involved in protein-protein interactions. The ankyrin repeat domain also contains H3K9me1 and H3K9me2 binding sites. [7] Therefore, the G9A/GLP complex can both methylate histone tails and bind to mono- and di-methylated H3K9 to recruit molecules, such as DNA methyltransferases, to the chromatin. [10] [7] H3K9me2 is a reversible modification and can be removed by a wide range of histone lysine demethylases (KDMs) including KDM1, KDM3, KDM4 and KDM7 family members. [7] [11] [12]

In addition to their role as histone lysine methyltransferases (HMTs), several studies have shown that G9A/GLP are also able to methylate a wide range of non-histone proteins. [13] However, as most of the reported methylation sites have been derived from mass spectrometry analyses, the function of many of these modifications remain unknown. Nevertheless, increasing evidence suggests methylation of non-histone proteins may influence protein stability, protein-protein interactions and regulate cellular signalling pathways. [14] [13] [15] [16] For example, G9A/GLP can methylate a number of transcription factors to regulate their transcriptional activity, including MyoD, [17] C/EBP, [16] Reptin, [15] p53, [18] MEF2D, [19] MEF2C [20] and MTA1. [21] Furthermore, G9A/GLP are able to methylate non-histone proteins to regulate complexes which recruit DNA methyltransferases to gene promoters to repress transcription via the methylation of CpG islands. [22] [23] Therefore, G9A and/or GLP have wide-ranging roles in development, [20] [17] establishing and maintaining cell identity, [17] [24] cell cycle regulation, [18] and cellular responses to environmental stimuli, [15]   which are dependent on their non-histone protein methyltransferase activity.

Clinical significance

Defects in this gene are a cause of chromosome 9q subtelomeric deletion syndrome (9q-syndrome or Kleefstra syndrome-1). [5]

Dysregulation of EHMT1 has been implicated in inflammatory and cardiovascular diseases. [25] [26] [27] [28]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. They can lead to cancer.

<span class="mw-page-title-main">Histone methyltransferase</span> Histone-modifying enzymes

Histone methyltransferases (HMT) are histone-modifying enzymes, that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific and arginine-specific. In both types of histone methyltransferases, S-Adenosyl methionine (SAM) serves as a cofactor and methyl donor group.
The genomic DNA of eukaryotes associates with histones to form chromatin. The level of chromatin compaction depends heavily on histone methylation and other post-translational modifications of histones. Histone methylation is a principal epigenetic modification of chromatin that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis.

<span class="mw-page-title-main">Histone H4</span> One of the five main histone proteins involved in the structure of chromatin

Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H4 is involved with the structure of the nucleosome of the 'beads on a string' organization. Histone proteins are highly post-translationally modified. Covalently bonded modifications include acetylation and methylation of the N-terminal tails. These modifications may alter expression of genes located on DNA associated with its parent histone octamer. Histone H4 is an important protein in the structure and function of chromatin, where its sequence variants and variable modification states are thought to play a role in the dynamic and long term regulation of genes.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications to histone proteins, primarily on their unstructured ends. Together with similar modifications such as DNA methylation it is part of the epigenetic code. Histones associate with DNA to form nucleosomes, which themselves bundle to form chromatin fibers, which in turn make up the more familiar chromosome. Histones are globular proteins with a flexible N-terminus that protrudes from the nucleosome. Many of the histone tail modifications correlate very well to chromatin structure and both histone modification state and chromatin structure correlate well to gene expression levels. The critical concept of the histone code hypothesis is that the histone modifications serve to recruit other proteins by specific recognition of the modified histone via protein domains specialized for such purposes, rather than through simply stabilizing or destabilizing the interaction between histone and the underlying DNA. These recruited proteins then act to alter chromatin structure actively or to promote transcription. For details of gene expression regulation by histone modifications see table below.

The family of heterochromatin protein 1 (HP1) consists of highly conserved proteins, which have important functions in the cell nucleus. These functions include gene repression by heterochromatin formation, transcriptional activation, regulation of binding of cohesion complexes to centromeres, sequestration of genes to the nuclear periphery, transcriptional arrest, maintenance of heterochromatin integrity, gene repression at the single nucleosome level, gene repression by heterochromatization of euchromatin, and DNA repair. HP1 proteins are fundamental units of heterochromatin packaging that are enriched at the centromeres and telomeres of nearly all eukaryotic chromosomes with the notable exception of budding yeast, in which a yeast-specific silencing complex of SIR proteins serve a similar function. Members of the HP1 family are characterized by an N-terminal chromodomain and a C-terminal chromoshadow domain, separated by a hinge region. HP1 is also found at some euchromatic sites, where its binding can correlate with either gene repression or gene activation. HP1 was originally discovered by Tharappel C James and Sarah Elgin in 1986 as a factor in the phenomenon known as position effect variegation in Drosophila melanogaster.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">EHMT2</span> Protein-coding gene in the species Homo sapiens

Euchromatic histone-lysine N-methyltransferase 2 (EHMT2), also known as G9a, is a histone methyltransferase enzyme that in humans is encoded by the EHMT2 gene. G9a catalyzes the mono- and di-methylated states of histone H3 at lysine residue 9 and lysine residue 27.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

Embryonic stem cells are capable of self-renewing and differentiating to the desired fate depending on their position in the body. Stem cell homeostasis is maintained through epigenetic mechanisms that are highly dynamic in regulating the chromatin structure as well as specific gene transcription programs. Epigenetics has been used to refer to changes in gene expression, which are heritable through modifications not affecting the DNA sequence.

<span class="mw-page-title-main">SETD6</span> Protein-coding gene in the species Homo sapiens

SET domain containing 6 is a protein in humans that is encoded by the SETD6 gene.

Protein methylation is a type of post-translational modification featuring the addition of methyl groups to proteins. It can occur on the nitrogen-containing side-chains of arginine and lysine, but also at the amino- and carboxy-termini of a number of different proteins. In biology, methyltransferases catalyze the methylation process, activated primarily by S-adenosylmethionine. Protein methylation has been most studied in histones, where the transfer of methyl groups from S-adenosyl methionine is catalyzed by histone methyltransferases. Histones that are methylated on certain residues can act epigenetically to repress or activate gene expression.

H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.

<span class="mw-page-title-main">Thomas Jenuwein</span> German scientist

Thomas Jenuwein is a German scientist working in the fields of epigenetics, chromatin biology, gene regulation and genome function.

H3K9me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 9th lysine residue of the histone H3 protein. H3K9me2 is strongly associated with transcriptional repression. H3K9me2 levels are higher at silent compared to active genes in a 10kb region surrounding the transcriptional start site. H3K9me2 represses gene expression both passively, by prohibiting acetylation as therefore binding of RNA polymerase or its regulatory factors, and actively, by recruiting transcriptional repressors. H3K9me2 has also been found in megabase blocks, termed Large Organised Chromatin K9 domains (LOCKS), which are primarily located within gene-sparse regions but also encompass genic and intergenic intervals. Its synthesis is catalyzed by G9a, G9a-like protein, and PRDM2. H3K9me2 can be removed by a wide range of histone lysine demethylases (KDMs) including KDM1, KDM3, KDM4 and KDM7 family members. H3K9me2 is important for various biological processes including cell lineage commitment, the reprogramming of somatic cells to induced pluripotent stem cells, regulation of the inflammatory response, and addiction to drug use.

H3K14ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 14th lysine residue of the histone H3 protein.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000181090 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036893 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: Euchromatic histone-lysine N-methyltransferase 1" . Retrieved 2012-03-04.
  6. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, et al. (August 2006). "Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome". American Journal of Human Genetics. 79 (2): 370–7. doi:10.1086/505693. PMC   1559478 . PMID   16826528.
  7. 1 2 3 4 5 6 7 Shinkai Y, Tachibana M (April 2011). "H3K9 methyltransferase G9a and the related molecule GLP". Genes & Development. 25 (8): 781–8. doi:10.1101/gad.2027411. PMC   3078703 . PMID   21498567.
  8. Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, et al. (March 2017). "Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase". Journal of Medicinal Chemistry. 60 (5): 1876–1891. doi:10.1021/acs.jmedchem.6b01645. PMC   5352984 . PMID   28135087.
  9. 1 2 Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, et al. (April 2005). "Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9". Genes & Development. 19 (7): 815–26. doi:10.1101/gad.1284005. PMC   1074319 . PMID   15774718.
  10. Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima Alves F, et al. (April 2016). "G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells". Cell Reports. 15 (1): 77–85. doi:10.1016/j.celrep.2016.03.007. PMC   4826439 . PMID   27052169.
  11. Delcuve GP, Rastegar M, Davie JR (May 2009). "Epigenetic control". Journal of Cellular Physiology. 219 (2): 243–50. doi:10.1002/jcp.21678. PMID   19127539. S2CID   39355478.
  12. Cloos PA, Christensen J, Agger K, Helin K (May 2008). "Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease". Genes & Development. 22 (9): 1115–40. doi:10.1101/gad.1652908. PMC   2732404 . PMID   18451103.
  13. 1 2 Biggar KK, Li SS (January 2015). "Non-histone protein methylation as a regulator of cellular signalling and function". Nature Reviews. Molecular Cell Biology. 16 (1): 5–17. doi:10.1038/nrm3915. PMID   25491103. S2CID   12558106.
  14. Lee JY, Lee SH, Heo SH, Kim KS, Kim C, Kim DK, et al. (2015-10-22). "Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability". PLOS ONE. 10 (10): e0141118. Bibcode:2015PLoSO..1041118L. doi: 10.1371/journal.pone.0141118 . PMC   4619656 . PMID   26492085.
  15. 1 2 3 Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, et al. (July 2010). "Negative regulation of hypoxic responses via induced Reptin methylation". Molecular Cell. 39 (1): 71–85. doi:10.1016/j.molcel.2010.06.008. PMC   4651011 . PMID   20603076.
  16. 1 2 Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ, Leutz A (September 2008). "G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta". The Journal of Biological Chemistry. 283 (39): 26357–63. doi: 10.1074/jbc.M802132200 . PMC   3258912 . PMID   18647749.
  17. 1 2 3 Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH, et al. (January 2012). "Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation". Proceedings of the National Academy of Sciences of the United States of America. 109 (3): 841–6. Bibcode:2012PNAS..109..841L. doi: 10.1073/pnas.1111628109 . PMC   3271886 . PMID   22215600.
  18. 1 2 Huang J, Dorsey J, Chuikov S, Pérez-Burgos L, Zhang X, Jenuwein T, et al. (March 2010). "G9a and Glp methylate lysine 373 in the tumor suppressor p53". The Journal of Biological Chemistry. 285 (13): 9636–41. doi: 10.1074/jbc.M109.062588 . PMC   2843213 . PMID   20118233.
  19. Choi J, Jang H, Kim H, Lee JH, Kim ST, Cho EJ, Youn HD (January 2014). "Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation". Nucleic Acids Research. 42 (1): 224–34. doi:10.1093/nar/gkt873. PMC   3874188 . PMID   24078251.
  20. 1 2 Ow JR, Palanichamy Kala M, Rao VK, Choi MH, Bharathy N, Taneja R (September 2016). "G9a inhibits MEF2C activity to control sarcomere assembly". Scientific Reports. 6 (1): 34163. Bibcode:2016NatSR...634163O. doi:10.1038/srep34163. PMC   5036183 . PMID   27667720.
  21. Nair SS, Li DQ, Kumar R (February 2013). "A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes". Molecular Cell. 49 (4): 704–18. doi:10.1016/j.molcel.2012.12.016. PMC   3582764 . PMID   23352453.
  22. Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, et al. (November 2011). "MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a". Nature Communications. 2: 533. Bibcode:2011NatCo...2..533C. doi:10.1038/ncomms1549. PMC   3286832 . PMID   22086334.
  23. Leung DC, Dong KB, Maksakova IA, Goyal P, Appanah R, Lee S, et al. (April 2011). "Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5718–23. Bibcode:2011PNAS..108.5718L. doi: 10.1073/pnas.1014660108 . PMC   3078371 . PMID   21427230.
  24. Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK, Stallcup MR (July 2012). "Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription". Journal of Cellular Biochemistry. 113 (7): 2406–14. doi:10.1002/jcb.24114. PMC   3350606 . PMID   22389001.
  25. Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, et al. (January 2017). "The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy". The Journal of Clinical Investigation. 127 (1): 335–348. doi:10.1172/JCI88353. PMC   5199699 . PMID   27893464.
  26. Harman JL, Dobnikar L, Chappell J, Stokell BG, Dalby A, Foote K, et al. (November 2019). "Epigenetic Regulation of Vascular Smooth Muscle Cells by Histone H3 Lysine 9 Dimethylation Attenuates Target Gene-Induction by Inflammatory Signaling". Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (11): 2289–2302. doi:10.1161/ATVBAHA.119.312765. PMC   6818986 . PMID   31434493.
  27. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, et al. (January 2011). "Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling". Nature Immunology. 12 (1): 29–36. doi:10.1038/ni.1968. PMC   3074206 . PMID   21131967.
  28. Harman JL, Jørgensen HF (October 2019). "The role of smooth muscle cells in plaque stability: Therapeutic targeting potential". British Journal of Pharmacology. 176 (19): 3741–3753. doi:10.1111/bph.14779. PMC   6780045 . PMID   31254285.