Earth Observing-1

Last updated
Earth Observing-1
EO-1 spacecraft model.png
Mission type Earth observation
Operator NASA  / GSFC
COSPAR ID 2000-075A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 26619
Website eo1.gsfc.nasa.gov
Mission durationPlanned: 1 year
Final: 16 years, 4 months, 8 days
Spacecraft properties
Manufacturer Swales Aerospace
Northrop Grumman
Launch mass573 kg (1,263 lb)
Start of mission
Launch date21 November 2000, 18:24:25 (2000-11-21UTC18:24:25) UTC [1]
Rocket Delta II 7320-10C, D282 [1]
Launch site Vandenberg SLC-2W
End of mission
DisposalDecommissioned
Deactivated30 March 2017 (2017-03-31)
Decay date2056 (estimated)
Orbital parameters
Reference system Geocentric
Regime Sun-synchronous
Semi-major axis 7,058 km (4,386 mi)
Eccentricity 0.00071
Perigee altitude 690 km (430 mi)
Apogee altitude 700 km (430 mi)
Inclination 98.21 degrees
Period 98.7 minutes
Epoch 21 November 2000, 08:24:00 UTC [2]
Instruments
Advanced Land Imager (ALI)
Hyperspectral Imager (Hyperion)
Atmospheric Corrector
 

Earth Observing-1 (EO-1) is a decommissioned NASA Earth observation satellite created to develop and validate a number of instrument and spacecraft bus breakthrough technologies. It was intended to enable the development of future Earth imaging observatories that will have a significant increase in performance while also having reduced cost and mass. The spacecraft was part of the New Millennium Program. It was the first satellite to map active lava flows from space; the first to measure a facility's methane leak from space; and the first to track re-growth in a partially logged Amazon forest from space. EO-1 captured scenes such as the ash after the World Trade Center attacks, the flooding in New Orleans after Hurricane Katrina, volcanic eruptions and a large methane leak in southern California. [3]

Contents

Overview

Its Advanced Land Imager (ALI) measured nine different wavelengths simultaneously, instead of the seven measured by the imager in Landsat 7. This permitted a greater flexibility in false-color imagery. Another improvement was that instead of having an imaging spectrometer that sweeps from side to side, the ALI had a linear array of spectrometers that each scanned a strip of ground parallel to that of adjacent spectrometers. In order to compare the two imagers, EO-1 followed Landsat 7 in its orbit by exactly one minute. The ALI's instrument design and onboard technology directly shaped the design of the Operational Land Imager (OLI) on Landsat 8. [3]

Other new technologies included:

EO-1 was also used to test new software, like the Autonomous Sciencecraft Experiment. This allowed the spacecraft to decide for itself how best to create a desired image. It was only limited by a priority list of different types of images, and by forecasts of cloud cover provided by the NOAA.

The knowledge acquired and technology developed from Hyperion is being incorporated into a NASA concept for a potential future hyperspectral satellite, the Hyperspectral Infrared Imager. [3]

It was expected to function for twelve months and was designed to function for eighteen months. Those expectations were greatly exceeded, [4] though its hydrazine fuel was mostly depleted by February 2011. Small maneuvers were successful for debris avoidance but long duration burns for orbit maintenance could not be performed due to insufficient fuel. [5]

The 2013 Senior Review Panel recommended that EO-1 be decommissioned in 2015, when the Mean Local Time (MLT) equatorial crossing would "have degraded to the point where many products will lose their usefulness." The EO-1 team proposed that the mission continue as a "lunar lab". They proposed that by turning the instruments toward the moon and spectrally characterizing selected lunar features at a variety of lunar phase angles, they could facilitate cross-calibration among imaging satellites. For example: if EO-1 Lunar Lab were to be in operation to overlap CLARREO Pathfinder in 2019, the coincident lunar measurements would allow the entire EO-1 ALI and Hyperion archive to be put on the CLARREO radiometric scale, along with the other sensors that have and will image the moon. In 2015, the Senior Review Panel stated that they could not support this justification for the extended mission beyond 2016 and recommended that it be decommissioned on 30 September 2016, when an analysis indicated that a MLT crossing of 08:00 would occur. [6] NASA Headquarters Earth Science Division then decided to terminate the EO-1 mission starting October 2016 with spacecraft passivation occurring November 2016 through February 2017 and full operations shut down to occur by March 2017. [5] The reasons for the decommissioning were:

  1. The early MLT would greatly limit the usefulness of the data for science research and application support.
  2. There was only limited utility of extending EO-1 mission for high latitude observations.
  3. There was limited potential scientific benefit and users of the proposed Lunar Lab.

EO-1 was deactivated on 30 March 2017. At the time of deactivation, it was estimated that the satellite would remain in orbit until 2056, when it will burn up in Earth's atmosphere. [7] [8] [3]

Related Research Articles

<span class="mw-page-title-main">Envisat</span> ESA Earth observation satellite (2002–2012)

Envisat is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

<span class="mw-page-title-main">Landsat 1</span> First satellite of the United States Landsat program, active 1972–78

Landsat 1 (LS-1), formerly named ERTS-A and ERTS-1, was the first satellite of the United States' Landsat program. It was a modified version of the Nimbus 4 meteorological satellite and was launched on July 23, 1972, by a Delta 900 rocket from Vandenberg Air Force Base in California.

The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans. Since the early 1970s, NASA has been developing its Earth Observing System, launching a series of Landsat satellites in the decade. Some of the first included passive microwave imaging in 1972 through the Nimbus 5 satellite. Following the launch of various satellite missions, the conception of the program began in the late 1980s and expanded rapidly through the 1990s. Since the inception of the program, it has continued to develop, including; land, sea, radiation and atmosphere. Collected in a system known as EOSDIS, NASA uses this data in order to study the progression and changes in the biosphere of Earth. The main focus of this data collection surrounds climatic science. The program is the centrepiece of NASA's Earth Science Enterprise.

<span class="mw-page-title-main">Landsat 7</span> American Earth-observing satellite launched in 1999 as part of the Landsat program

Landsat 7 is the seventh satellite of the Landsat program. Launched on 15 April 1999, Landsat 7's primary goal is to refresh the global archive of satellite photos, providing up-to-date and cloud-free images. The Landsat program is managed and operated by the United States Geological Survey, and data from Landsat 7 is collected and distributed by the USGS. The NASA WorldWind project allows 3D images from Landsat 7 and other sources to be freely navigated and viewed from any angle. The satellite's companion, Earth Observing-1, trailed by one minute and followed the same orbital characteristics, but in 2011 its fuel was depleted and EO-1's orbit began to degrade. Landsat 7 was built by Lockheed Martin Space Systems.

<span class="mw-page-title-main">Chang'e 1</span> Chinese lunar probe launched in 2007

Chang'e 1 was an uncrewed Chinese lunar-orbiting spacecraft, part of the first phase of the Chinese Lunar Exploration Program. The spacecraft was named after the Chinese Moon goddess, Chang'e.

Orbital Sciences Corporation was an American company specializing in the design, manufacture, and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems to create a new company called Orbital ATK, Inc., which in turn was purchased by Northrop Grumman in 2018. The remnants of the former Orbital Sciences Corporation became a subsidiary of Northrop Grumman, known as Northrop Grumman Space Systems.

New Millennium Program (NMP) was a NASA project with focus on engineering validation of new technologies for space applications. Funding for the program was eliminated from the FY2009 budget by the 110th United States Congress, effectively leading to its cancellation.

<span class="mw-page-title-main">Landsat 5</span> American Earth-observing satellite launched in 1984 as part of the Landsat program

Landsat 5 was a low Earth orbit satellite launched on March 1, 1984, to collect imagery of the surface of Earth. A continuation of the Landsat Program, Landsat 5 was jointly managed by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data from Landsat 5 was collected and distributed from the USGS's Center for Earth Resources Observation and Science (EROS).

<span class="mw-page-title-main">Landsat 4</span> American Earth-observing satellite launched in 1982 as part of the Landsat program

Landsat 4 is the fourth satellite of the Landsat program. It was launched on July 16, 1982, with the primary goal of providing a global archive of satellite imagery. Although the Landsat Program is managed by NASA, data from Landsat 4 was collected and distributed by the U.S. Geological Survey. Landsat 4 science operations ended on December 14, 1993, when the satellite lost its ability to transmit science data, far beyond its designed life expectancy of five years. The satellite housekeeping telemetry and tracking continued to be maintained by NASA until it was decommissioned on June 15, 2001.

<span class="mw-page-title-main">Landsat 3</span> American Earth-observing satellite launched in 1978 as part of the Landsat program

Landsat 3 is the third satellite of the Landsat program. It was launched on March 5, 1978, with the primary goal of providing a global archive of satellite imagery. Unlike later Landsat satellites, Landsat 3 was managed solely by NASA. Landsat 3 decommissioned on September 7, 1983, beyond its design life of one year. The data collected during Landsat 3's lifetime was used by 31 countries. Countries that cannot afford their own satellite are able to use the data for ecological preservation efforts and to determine the location of natural resources.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">Landsat 8</span> American Earth-observing satellite launched in 2013 as part of the Landsat program

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and the United States Geological Survey (USGS). NASA Goddard Space Flight Center in Greenbelt, Maryland, provided development, mission systems engineering, and acquisition of the launch vehicle while the USGS provided for development of the ground systems and will conduct on-going mission operations. It comprises the camera of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which can be used to study Earth surface temperature and is used to study global warming.

<span class="mw-page-title-main">LADEE</span> Former NASA Lunar mission

The Lunar Atmosphere and Dust Environment Explorer was a NASA lunar exploration and technology demonstration mission. It was launched on a Minotaur V rocket from the Mid-Atlantic Regional Spaceport on September 7, 2013. During its seven-month mission, LADEE orbited the Moon's equator, using its instruments to study the lunar exosphere and dust in the Moon's vicinity. Instruments included a dust detector, neutral mass spectrometer, and ultraviolet-visible spectrometer, as well as a technology demonstration consisting of a laser communications terminal. The mission ended on April 18, 2014, when the spacecraft's controllers intentionally crashed LADEE into the far side of the Moon, which, later, was determined to be near the eastern rim of Sundman V crater.

<span class="mw-page-title-main">Suomi NPP</span>

The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.

TanSat, also known as CarbonSat, is a Chinese Earth observation satellite dedicated to monitoring carbon dioxide in Earth's atmosphere. It is generally classified as a minisatellite, and is the first dedicated carbon mission of the Chinese space program. The mission was formally proposed in 2010, and work began in January 2011. It is funded by the Ministry of Science and Technology (MOST) and was built by the Shanghai Institute of Microsystem And Information Technology (SIMIT).

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA satellite

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">Martian Moons eXploration</span> Planned sample-return mission by Japan to Phobos

The Martian Moons eXploration (MMX) is a robotic space probe set for launch in 2024 to bring back the first samples from Mars' largest moon Phobos. Developed by the Japan Aerospace Exploration Agency (JAXA) and announced on 9 June 2015, MMX will land and collect samples from Phobos once or twice, along with conducting Deimos flyby observations and monitoring Mars's climate.

<span class="mw-page-title-main">Hyperspectral Imager for the Coastal Ocean</span> Observation sensor on the International Space Station

The Hyperspectral Imager for the Coastal Ocean (HICO) was a hyperspectral earth observation sensor that operated on the International Space Station (ISS) from 2009 to 2014. HICO collected hyperspectral satellite imagery of the earth's surface from the ISS.

References

  1. 1 2 Ray, Justin (22 November 2000). "Delta 2 rocket puts three satellites into Earth orbit". Spaceflight Now. Archived from the original on 18 April 2022. Retrieved 14 April 2017.
  2. "EO 1 - Trajectory Details". National Space Science Data Center . NASA. Archived from the original on 18 April 2022. Retrieved 14 April 2017.
  3. 1 2 3 4 "NASA says goodbye to Earth Observing-1 (EO-1) satellite after 17 years". 17 March 2017. Archived from the original on 18 April 2022. Retrieved 14 December 2017.
  4. Riebeek, Holli (22 November 2010). "Earth Observing-1: Ten Years of Innovation". NASA. Archived from the original on 18 April 2022. Retrieved 14 April 2017.
  5. 1 2 "EO-1 Mission Operations Phase F Summary". NASA. 17 June 2016. Archived from the original on 15 November 2016.
  6. Liu, Guosheng; Barros, Ana; Dessler, Andrew; Egbert, Gary; Gille, Sarah; Jeagle, Lyatt; Jones, Linwood; Miller, Richard; Posselt, Derek; Powell, Scott; Vandemark, Douglas (22 June 2015). "NASA Earth Science Senior Review 2015" (PDF). Archived (PDF) from the original on 13 April 2022. Retrieved 14 December 2017.
  7. Clark, Stephen (1 April 2017). "Pioneering Earth observation satellite retired by NASA". Space.com . Retrieved 14 April 2017.
  8. Boyle, Rebecca (6 April 2017). "Our Planet's Eye in the Sky Finally Closes". The Atlantic . Archived from the original on 18 April 2022. Retrieved 14 April 2017.