European corn borer

Last updated

European corn borer
Ostrinia nubilalis01.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Crambidae
Genus: Ostrinia
Species:
O. nubilalis
Binomial name
Ostrinia nubilalis
(Hübner, 1796) [1]
Synonyms
List
    • Pyralis nubilalisHübner, 1796
    • Pyrausta nubilalis
    • Botis nubilalis var. paulalisFuchs, 1900
    • Ostrinia nubilalis mauretanicaMutuura & Munroe, 1970
    • Ostrinia nubilalis persicaMutuura & Munroe, 1970
    • Pyralis glabralisHaworth, 1803
    • Pyralis silacealisHübner, 1796
    • Botys appositalisLederer, 1858
    • Pyrausta rubescensKrulikovsky, 1928
    • Pyrausta nubilalis ab. flavaDufrane, 1930
    • Pyrausta nubilalis ab. fuscalisRomaniszyn, 1933
    • Pyrausta nubilalis ab. insignisSkala, 1928
    • Pyrausta nubilalis ab. margaritaSkala, 1928
    • Pyrausta nubilalis ab. minorDufrane, 1930
    • Pyrausta nubilalis f. fanalisCostantini, 1923

The European corn borer (Ostrinia nubilalis), also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize (Zea mays). The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. [2] Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

Contents

The adult European corn borer is about 25 millimetres (0.98 in) long with a 26–30 millimetres (1.0–1.2 in) [3] wingspan. The female is light yellowish brown with dark, irregular, wavy bands across the wings. The male is slightly smaller and darker.

European corn borer caterpillars damage corn by chewing tunnels through many parts of the plant, leading to a decrease in agricultural yield.

Geographic range

The European corn borer is native to Europe and was introduced to North America in the early 20th century. [4] This moth plagues corn crops in France, Spain, Italy, and Poland. In North America, the European corn borer is found in eastern Canada and every U.S. state east of the Rocky Mountains. [5]

Life cycle

The European corn borer progresses through four developmental stages—egg, larva, pupa, and adult. The insect is referred to as a borer in its larval stage and as a moth in its adult stage. The adult moths lay their eggs on corn plants. Larvae hatch from the eggs. Larvae have five instars or sub-stages of development, which are followed by a period of diapause or hibernation in a pupa. During the pupal stage, the borers progress through metamorphosis in a suspended chrysalis. Following this intense period of development, an adult moth emerges from the pupa. The length of the pupal stage is determined by environmental factors such as temperature, number of hours of light, and larval nutrition, in addition to genetics. [6]

The bivoltine populations of European corn borers undergo the pupal stage twice, first in April, May, and June and then again in July and August. During the winter, the European corn borer stays in its larval stage. Temperatures exceeding 50 degrees Fahrenheit (10 °C) induce the other developmental stages. The North American corn crop grows during these warmer months and provides a food source for the borers. [6]

Adult moth Ostrinia nubilalis (European corn borer), Arnhem, the Netherlands.jpg
Adult moth
European corn borer (Ostrinia nubilalis) nectaring.

Adult

The European corn borer is about 1 inch (2.5 cm) long with a 0.75- to 1-inch (1.9–2.5 cm) wingspan. The female is light yellowish brown with dark, irregular, wavy bands across the wings. The male is slightly smaller and darker. The tip of its abdomen protrudes beyond its closed wings. They are most active before dawn. The adults spend most of their time feeding and mating. Males and females of different strains have been found to produce differing sex pheromones. [7]

Caterpillar Corn borer.jpg
Caterpillar

Larva

The fully grown larva is 0.75 to 1 inch (1.9–2.5 cm) in length. Larvae vary in color from light brown to pinkish gray and have conspicuous small, round, brown spots on each segment along the body. As they grow they reach between 2 and 20 mm. The larvae feed on the corn whorl and burrow into the stalk and ear. They have high mortality directly after emergence, but as soon as a feeding site is established, they have better survival rates. Total development before pupation lasts 50 days on average. [8]

Diapause

Diapause, also known as hibernation, is induced in European corn borers by changes in temperature and daylight length. At higher temperatures, shorter photoperiods are sufficient to induce diapause. At 13.5 hours of light followed by 10.5 hours of dark, 100% of European corn borer larvae entered diapause regardless of temperature with the range of 18 to 29 °C (64 to 84 °F). At high temperatures and long photoperiods, fewer larvae enter diapause. [9]

Eggs

Female corn borer moths lay clusters of eggs on corn leaves, usually on the undersides. The egg masses, or clusters, are laid in an overlapping configuration and are whitish yellow. As the larvae develop inside their eggs, the eggs become more and more transparent and the black heads of the immature caterpillars become visible. The caterpillars hatch by chewing their way out of the eggs.

A female moth can lay two egg masses per night over 10 nights. The number of eggs per egg mass decreases each day. The female lays white eggs which become pale yellow and finally translucent before hatching. The eggs hatch within three to seven days of laying. [10]

Mating

Breeding cycle

The original European corn borers introduced to North America in the early 20th century established a population in New York. This population produced one brood per year. A second population was introduced in Massachusetts and spread to Long Island and the Hudson River Valley. This second population produces two broods per year. [11]

Polyandry

If presented with the opportunity, female European corn borers, like most moths, mate with multiple males in a reproductive strategy known as polyandry. Polyandry confers several benefits to the females. For example, multiple matings increase female fecundity and longevity, because female moths receive both nutritional resources and multiple spermatophores from males. Furthermore, mating with multiple males ensures that the female receives enough sperm to completely fertilize her eggs. Additionally, it increases the reproductive fitness of females, because it increases the genetic diversity of the female's offspring - thus increasing the likelihood that they will mate and pass on her genes. [12]

Sex pheromones

Female calling behavior in European corn borers involves the extrusion of the pheromone gland and release of sex pheromones. This calling behavior is influenced by the moth's circadian rhythm and tends to occur at night. Higher humidity also induces the calling behavior, while desiccation, or drying out, decreases the calling behavior. [13] Both male and female European corn borers produce sex pheromones. [14]

There are two strains of European corn borers that are defined by their sex pheromone communication variant. These are the Z and E strains, named after the stereochemistry of the predominant isomer of 11-tetradecenyl acetate that they produce. [11] The E variant of pheromone has a trans- configuration of hydrogen molecules around its double bond, while the Z variant has a cis- configuration. The Z strain produces a 97:3 ratio of Z to E isomer pheromone while the E strain produces a 4:96 ratio of Z to E isomer pheromone. A mixture of isomers is much more efficient in attracting the moth than a single component. [15] [11] The Z and E strains can mate and produce intermediate variants. [16]

Genetics

Production of the specific pheromone blend in females is controlled by a single autosomal factor. Heterozygous females produce more E isomer than Z. The response to these pheromones in the olfactory cells of male European corn borers is also controlled by a single autosomal factor with two alleles. Analysis of the electrophysiological signaling of olfactory cells showed that those with two E alleles responded strongly to the E isomer and weakly to the Z isomer. The opposite effect was found in homozygous Z males. Males heterozygous for this autosomal factor exhibited similar neurological responses to both isomers of pheromone. Finally, response to the pheromone is controlled by two factors, a sex-linked gene on the Z chromosome and another on an autosome. [16] In species of Lepidoptea, sex is determined through the ZW sex-determination system where males are homozygous ZZ and females are heterozygous ZW. [17]

Sex selection

Males also produce sex pheromones that are structurally similar to those released by females. Composition of male pheromones is essential to female acceptance. The composition of male pheromones varies with age. Females prefer the pheromones of older males. Divergence of the pheromone composition can result in reproductive isolation and eventual speciation. This evolution is thought to take place in a concerted way between males and females within a population. [14]

Egg laying

During her adult life of 18 to 24 days, a female can lay a total of 400 to 600 eggs. [7] The female European corn borer moth first lays eggs in June. The eggs are laid on the underside of corn plant leaves near the midvein. Around 90% of the eggs are laid on the leaf just below the primary ear leaf, and an equal number of eggs are laid above and below this leaf, with a slight bias towards the lower leaves. The egg masses are all laid within five leaves of the central ear leaf. [18] Brood sizes range from 15 to 30 eggs and egg masses are about 6 mm in diameter. [19] The period of egg laying is about 14 days with an average of 20 to 50 eggs per day. [7]

Male investment

The male European corn borer produces a spermatophore ejaculate that contains spermatozoa to fertilize the female and protein to nourish the female, a nuptial gift. The cost of producing a spermatophore is relatively low compared to the female investment in oviposition. Males mate an average of 3.8 times during their life. The average refractory period between mating cycles for the male is 1.6 days. With each successive mating, the volume of the spermatophore decreases. This decreased spermatophore volume is associated with a decrease in female fecundity and fertility. Females who mate with males that have already mated are less likely to deposit all of their eggs. [20]

Host plants

The European corn borer lives and feeds primarily on field corn, but also eats sweet corn, popcorn, and seed corn. The first generation of corn borers which develops during the late spring feeds on the leaves and stalks of corn plants. In addition, the second generation feeds on the ear of corn, the leaf sheath, and the ear shank. If a third generation is produced, it will feed on the ear, the leaf sheath, and the ear shank. [4] [19]

When corn is not abundant or near the end of the harvest season, European corn borers will infest lima beans, peppers, potatoes, and snap peas. Rarely, these moths will live on other grains, soybeans, or flowers. [19]

Pest of crop plants

Corn destruction caused by Ostrinia nubilalis Symptoms corncobs destruction caused by Ostrinia nubilalis.JPG
Corn destruction caused by Ostrinia nubilalis

The European corn borer gets its name from its habit of boring holes into all components of the corn plant. The damage to the leaves reduces photosynthesis. Damage to the corn stalk decreases the amount of water and nutrients the plant can transport to the ear. European corn borers also eat the ear - which reduces crop yield - and the ear shank, which often results in the ear falling to the ground, making it unharvestable. [21] [19]

Biological control

Biological control agents of corn borers include the hymenopteran parasitoid of the genus Trichogramma , the fungus Beauveria bassiana and the protozoa Nosema pyrausta.

Bt corn, a variety of genetically modified corn, has had its genome modified to include a synthetic version of an insecticidal gene from the Bacillus thuringiensis kurstaki . As a result, the corn variety produces a protein that kills the larvae of Lepidoptera, the taxonomic order which includes the European corn borer. [22]

Immature corn shoots accumulate a powerful antibiotic substance, DIMBOA, that serves as a natural defense against a wide range of pests and is also responsible for the relative resistance of immature corn to the European corn borer.

Refuge corn recommendations

When planting Bt corn, farmers must plant an area of refuge corn. A refuge area is an area of crops that do not contain the insecticidal genes. This refuge area is necessary is to prevent the European corn borer and other pests from developing resistance to the Bt gene. Insects who feed on the non-Bt crops will not develop resistance, but will continue to mate with any moths that survive after eating the genetically-modified corn. It is rare for an insect to survive after eating Bt corn, but when these resistant individuals mate with moths from the refuge area, the offspring they produce will still be susceptible to the toxin. [23] Studies on the dispersal of European corn borers found that planting refuge corn within a half-mile of Bt crops prevents resistance. [24]

Mutualism

The presence of European corn borers on corn crops and the damage caused by them increases the likelihood of stalk rot caused by the pathogen Fusarium graminearum . The tunneling done by European corn borers makes it easier for F. graminearum to infect corn stalks and increases the amount of necrotic stalk tissue. The presence of F. graminearum in corn infested by European corn borers also speeds the development of larvae. [25]

Climate change

With the increase in temperature associated with climate change, it is predicted that the habitable region of the European corn borer will expand. Additionally, an increase in the number of generations is expected. The CLIMEX model, which models organisms' response to climate change, predicts that the area of arable land affected by the European corn borer in Europe will increase by 61%. [26]

See also

Notes

  1. "Ostrinia nubilalis". Integrated Taxonomic Information System . Retrieved July 6, 2007.
  2. Caffrey, D. J.; Worthley, L. H. (1927). Details - A progress report on the investigations of the European corn borer. doi:10.5962/bhl.title.108390.
  3. "European Corn-borer Ostrinia nubilalis". UK Moths. Retrieved September 8, 2019.
  4. 1 2 Martel, C.; Réjasse, A.; Rousset, F.; Bethenod, M.-T.; Bourguet, D. (2003). "Host-plant-associated genetic differentiation in Northern French populations of the European corn borer". Heredity. 90 (2): 141–149. doi: 10.1038/sj.hdy.6800186 . ISSN   0018-067X. PMID   12634820.
  5. The European Corn Borer . Retrieved October 25, 2017.{{cite book}}: |website= ignored (help)
  6. 1 2 Life Cycle and Generational Ecotypes of the European Corn Borer . Retrieved October 25, 2017.{{cite book}}: |website= ignored (help)
  7. 1 2 3 "European corn borer Ostrinia nubilalis (Hübner)". Featured Creatures. University of Florida. Retrieved October 30, 2017.
  8. Missouri Pest Monitoring Network (September 29, 2015). "European Corn Borer I.D." Integrated Pest Management. University of Missouri Division of Plant Sciences. Retrieved November 30, 2017.
  9. Beck, S.D.; Hanec, W. (1960). "Diapause in the European corn borer, Pyrausta nubilalis (Hübn.)". Journal of Insect Physiology. 4 (4): 304–318. doi:10.1016/0022-1910(60)90056-1.
  10. Phelan, P. L.; Norris, K. H.; Mason, J. F. (December 1, 1996). "Soil-Management History and Host Preference by Ostrinia nubilalis: Evidence for Plant Mineral Balance Mediating Insect–Plant Interactions". Environmental Entomology. 25 (6): 1329–1336. doi:10.1093/ee/25.6.1329. ISSN   0046-225X.
  11. 1 2 3 Glover, T. J.; Tang, X.-H.; Roelofs, W. L. (January 2, 1987). "Sex pheromone blend discrimination by male moths from E and Z strains of European corn borer". Journal of Chemical Ecology. 13 (1): 143–151. doi:10.1007/BF01020358. ISSN   0098-0331. PMID   24301366. S2CID   2332417.
  12. Fadamiro, Henry Y; Baker, Thomas C (1999). "Reproductive performance and longevity of female European corn borer, Ostrinia nubilalis: effects of multiple mating, delay in mating, and adult feeding". Journal of Insect Physiology. 45 (4): 385–392. doi:10.1016/s0022-1910(98)00137-1. PMID   12770364.
  13. Royer, L.; McNeil, J. N. (November 2, 1991). "Changes in calling behaviour and mating success in the European corn borer (Ostrinia nubilalis), caused by relative humidity". Entomologia Experimentalis et Applicata. 61 (2): 131–138. doi:10.1111/j.1570-7458.1991.tb02405.x. ISSN   1570-7458. S2CID   86229678.
  14. 1 2 Lassance, Jean-Marc; Löfstedt, Christer (March 3, 2009). "Concerted evolution of male and female display traits in the European corn borer, Ostrinia nubilalis". BMC Biology. 7: 10. doi: 10.1186/1741-7007-7-10 . ISSN   1741-7007. PMC   2671483 . PMID   19257880.
  15. Klun, J. A. (December 1, 1975). "Insect Sex Pheromones: Intraspecific Pheromonal Variability of Ostrinia nubilalis in North America and Europe". Environmental Entomology. 4 (6): 891–894. doi:10.1093/ee/4.6.891. ISSN   0046-225X.
  16. 1 2 Roelofs, W.; Glover, T.; Tang, X. H.; Sreng, I.; Robbins, P.; Eckenrode, C.; Löfstedt, C.; Hansson, B. S.; Bengtsson, B. O. (November 1987). "Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes". Proceedings of the National Academy of Sciences of the United States of America. 84 (21): 7585–7589. Bibcode:1987PNAS...84.7585R. doi: 10.1073/pnas.84.21.7585 . ISSN   0027-8424. PMC   299344 . PMID   16593886.
  17. Traut, W.; Sahara, K.; Marec, F. (2007). "Sex chromosomes and sex determination in Lepidoptera". Sexual Development: Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation. 1 (6): 332–346. doi:10.1159/000111765. ISSN   1661-5433. PMID   18391545. S2CID   6885122.
  18. Orr, David B.; Landis, Douglas A. (August 1, 1997). "Oviposition of European Corn Borer (Lepidoptera: Pyralidae) and Impact of Natural Enemy Populations in Transgenic Versus Isogenic Corn". Journal of Economic Entomology. 90 (4): 905–909. doi: 10.1093/jee/90.4.905 . ISSN   0022-0493.
  19. 1 2 3 4 "European Corn Borer and Bacillus thuringiensis". Plant & Soil Sciences eLibrary. Retrieved October 25, 2017.
  20. Royer, L.; McNeil, J. N. (1993). "Male Investment in the European Corn Borer, Ostrinia nubilalis (Lepidoptera: Pyralidae): Impact on Female Longevity and Reproductive Performance". Functional Ecology. 7 (2): 209–215. doi:10.2307/2389889. JSTOR   2389889.
  21. Vinal, Stuart Cunningham (1917). The European Corn Borer, Pyrausta nubilalis Hübner: A Recently Established Pest in Massachusetts. Chicago: Massachusetts Agricultural Experiment Station. pp. 147–149.
  22. University of Kentucky Extension Service Bt Corn - What it is and how it works
  23. "Crop Refuge Area". www.bt.ucsd.edu. Retrieved December 1, 2017.
  24. Showers, William B.; Hellmich, Richard L.; Derrick-Robinson, M. Ellison; Hendrix, William H. (August 1, 2001). "Aggregation and Dispersal Behavior of Marked and Released European Corn Borer (Lepidoptera: Crambidae) Adults". Environmental Entomology. 30 (4): 700–710. doi: 10.1603/0046-225x-30.4.700 . ISSN   0046-225X. S2CID   30095323.
  25. Chiang, H. C.; Wilcoxson, R. D. (October 1, 1961). "Interactions of the European Corn Borer and Stalk Rot in Corn". Journal of Economic Entomology. 54 (5): 850–852. doi:10.1093/jee/54.5.850. ISSN   0022-0493.
  26. Kocmánková, E.; Trnka, M.; Eitzinger, J.; Dubrovský, M.; Štěpánek, P.; Semerádová, D.; Balek, J.; Skalák, P.; Farda, A. (2011). "Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach". The Journal of Agricultural Science. 149 (2): 185–195. doi:10.1017/s0021859610001140. ISSN   1469-5146. S2CID   85787181.

Related Research Articles

<i>Helicoverpa zea</i> Species of moth

Helicoverpa zea, commonly known as the corn earworm, is a species in the family Noctuidae. The larva of the moth Helicoverpa zea is a major agricultural pest. Since it is polyphagous during the larval stage, the species has been given many different common names, including the cotton bollworm and the tomato fruitworm. It also consumes a wide variety of other crops.

<i>Trichogramma</i> Genus of parasitic insects

Trichogramma is a genus of minute polyphagous wasps that are endoparasitoids of insect eggs. Trichogramma is one of around 80 genera from the family Trichogrammatidae, with over 200 species worldwide.

<span class="mw-page-title-main">Codling moth</span> Species of moth that feeds on fruit (Cydia pomonella)

The codling moth is a member of the Lepidopteran family Tortricidae. They are major pests to agricultural crops, mainly fruits such as apples and pears, and a codling moth larva is often called an "apple worm". Because the larvae are not able to feed on leaves, they are highly dependent on fruits as a food source and thus have a significant impact on crops. The caterpillars bore into fruit and stop it from growing, which leads to premature ripening. Various means of control, including chemical, biological, and preventive, have been implemented. This moth has a widespread distribution, being found on six continents. Adaptive behavior such as diapause and multiple generations per breeding season have allowed this moth to persist even during years of bad climatic conditions.

<span class="mw-page-title-main">Indianmeal moth</span> Species of moth

The Indianmeal moth, also spelled Indian meal moth and Indian-meal moth, is a pyraloid moth of the family Pyralidae. Alternative common names are hanger-downers, weevil moth, pantry moth, flour moth or grain moth. The almond moth and the raisin moth are commonly confused with the Indian-meal moth due to similar food sources and appearance. The species was named for feeding on Indian meal or cornmeal, and does not occur natively in India. It is also not to be confused with the Mediterranean flour moth, another common pest of stored grains.

<span class="mw-page-title-main">Cabbage looper</span> Species of moth

The cabbage looper is a medium-sized moth in the family Noctuidae, a family commonly referred to as owlet moths. Its common name comes from its preferred host plants and distinctive crawling behavior. Cruciferous vegetables, such as cabbage, bok choy, and broccoli, are its main host plant; hence, the reference to cabbage in its common name. The larva is called a looper because it arches its back into a loop when it crawls.

<span class="mw-page-title-main">Diamondback moth</span> Species of moth

The diamondback moth, sometimes called the cabbage moth, is a moth species of the family Plutellidae and genus Plutella. The small, grayish-brown moth sometimes has a cream-colored band that forms a diamond along its back. The species may have originated in Europe, South Africa, or the Mediterranean region, but it has now spread worldwide.

<i>Agrotis ipsilon</i> Species of moth

Agrotis ipsilon, the dark sword-grass, black cutworm, greasy cutworm, floodplain cutworm or ipsilon dart, is a small noctuid moth found worldwide. The moth gets its scientific name from black markings on its forewings shaped like the letter "Y" or the Greek letter upsilon. The larvae are known as "cutworms" because they cut plants and other crops. The larvae are serious agricultural pests and feed on nearly all varieties of vegetables and many important grains.

<i>Spodoptera littoralis</i> Species of moth

Spodoptera littoralis, also referred to as the African cotton leafworm or Egyptian cotton leafworm or Mediterranean brocade, is a species of moth in the family Noctuidae. S. littoralis is found widely in Africa, Mediterranean Europe and Middle Eastern countries. It is a highly polyphagous organism that is a pest of many cultivated plants and crops. As a result, this species was assigned the label of A2 quarantine pest by the EPPO and was cautioned as a highly invasive species in the United States. The devastating impacts caused by these pests have led to the development of both biological and chemical control methods. This moth is often confused with Spodoptera litura.

<i>Mythimna unipuncta</i> Species of moth

Mythimna unipuncta, the true armyworm moth, white-speck moth, common armyworm, or rice armyworm, is a species of moth in the family Noctuidae. The species was first described by Adrian Hardy Haworth in 1809. Mythimna unipuncta occurs in most of North America south of the Arctic, as well as parts of South America, Europe, Africa, and Asia. Although thought to be Neotropical in origin, it has been introduced elsewhere, and is often regarded as an agricultural pest. They are known as armyworms because the caterpillars move in lines as a massive group, like an army, from field to field, damaging crops.

<i>Utetheisa ornatrix</i> Species of moth

Utetheisa ornatrix, also called the ornate bella moth, ornate moth, bella moth or rattlebox moth, is a moth of the subfamily Arctiinae. It is aposematically colored ranging from pink, red, orange and yellow to white coloration with black markings arranged in varying patterns on its wings. It has a wingspan of 33–46 mm. Moths reside in temperate midwestern and eastern North America as well as throughout Mexico and other parts of Central America. Unlike most moths, the bella moth is diurnal. Formerly, the bella moth or beautiful utetheisa of temperate eastern North America was separated as Utetheisa bella. Now it is united with the bella moth in Utetheisa ornatrix.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<i>Zeiraphera canadensis</i> Species of moth

Zeiraphera canadensis, the spruce bud moth, is a moth of the family Tortricidae. It is a small brown moth mainly found in North America, specifically New Brunswick, Quebec, and the north-eastern United States. The adult moth flutters quickly, and stays low among trees during the day and higher above tree cover after sunset. The spruce bud moth relies primarily on the white spruce tree as a host plant. Both male and female spruce bud moths mate multiply, however males have the ability to secrete accessory gland proteins that prevent female re-mating. The moth is univoltine, meaning only one generation hatches per year, and its eggs overwinter from July to May. The species Z. ratzeburgiana is very similar to Z. canadensis and can only be distinguished by the presence of an anal comb in Z. canadensis.

<span class="mw-page-title-main">Pheromone trap</span> Type of insect trap that uses pheromones to lure insects

A pheromone trap is a type of insect trap that uses pheromones to lure insects. Sex pheromones and aggregating pheromones are the most common types used. A pheromone-impregnated lure, as the red rubber septa in the picture, is encased in a conventional trap such as a bottle trap, Delta trap, water-pan trap, or funnel trap. Pheromone traps are used both to count insect populations by sampling, and to trap pests such as clothes moths to destroy them.

<i>Calyptra thalictri</i> Species of moth

Calyptra thalictri is a moth of the family Erebidae. It is native to the area ranging from Japan and Korea to China and Malaysia, west through the Urals to Southern Europe, but it has recently expanded its range to northern Europe. In 2000, it was observed in Finland and in 2008 it was recorded even further west, in Sweden.

<span class="mw-page-title-main">Hair-pencil</span> Pheromone signaling structures in lepidopteran males

Hair-pencils and coremata are pheromone signaling structures present in lepidopteran males. Males use hair-pencils in courtship behaviors with females. The pheromones they excrete serve as both aphrodisiacs and tranquilizers to females as well as repellents to conspecific males. Hair-pencil glands are stored inside the male until courtship begins, at which point they are forced out of the body by sclerotized levers present on the abdomen. Coremata are very similar structures. Their exact definition is confused by early descriptions but they are more specifically defined as the internal, glandular, eversible structures that bear the hair-pencils and can be voluntarily inflated with hemolymph or air.

<i>Eldana</i> Genus of moths

Eldana is a genus of moths of the family Pyralidae containing only one species, the African sugar-cane borer, which is commonly found in Equatorial Guinea, Ghana, Mozambique, Sierra Leone and South Africa. Adults have pale brown forewings with two small spots in the centre and light brown hindwings, and they have a wingspan of 35mm. This species is particularly relevant to humans because the larvae are a pest of the Saccharum species as well as several grain crops such as sorghum and maize. Other recorded host plants are cassava, rice and Cyperus species. When attacking these crops, E. saccharina bores into the stems of their host plant, causing severe damage to the crop. This behavior is the origin of the E. saccharrina's common name, the African sugar-cane borer. The African sugar-cane borer is a resilient pest, as it can survive crop burnings. Other methods such as intercropping and parasitic wasps have been employed to prevent further damage to crops.

<i>Cadra calidella</i> Species of moth

Cadra calidella, the dried fruit or date moth, is a species of snout moth in the genus Cadra and commonly mistaken for the species Cadra figulilella. It thrives in warmer conditions and is found primarily in Mediterranean countries, although it can also be found in Central Asia, Kazakhstan, Transcaucasia, Caucasus, and the western part of Russia. It feeds on dried fruits, carobs, nuts and seeds, hence earning its colloquial name. This diet damages the food industry, and it is a common storage pest. Because of this, much research has been done to study ways to limit its reproduction rate and population size. It was first described by Achille Guenée in 1845.

Ostrinia scapulalis, the adzuki bean borer or adzuki bean worm, is a species of moth in the family Crambidae. It was described by Francis Walker in 1859. It is one of 20 moths in the genus Ostrinia and is of Eurasian origin. The larvae have a gray mid-dorsal line and can be light pink or beige. The adult adzuki bean borer has a yellowish-brown forewing with jagged lines and variable darker shading, with a wingspan that ranges from 20 to 32 mm. The moths of this species are nocturnal and tend to be attracted to light.

<i>Prionus californicus</i> Species of beetle

Prionus californicus, commonly known as the California root borer, is a species of insect in the longhorn beetle family (Cerambycidae). It is native to the American west where it is often a pest of orchard and vine crops.

<i>Ostrinia furnacalis</i> Species of moth

Ostrinia furnacalis is a species of moth in the family Crambidae, the grass moths. It was described by Achille Guenée in 1854 and is known by the common name Asian corn borer since this species is found in Asia and feeds mainly on corn crop. The moth is found from China to Australia, including in Java, Sulawesi, the Philippines, Borneo, New Guinea, the Solomon Islands, and Micronesia. The Asian corn borer is part of the species complex, Ostrinia, in which members are difficult to distinguish based on appearance. Other Ostrinia such as O. orientalis, O. scapulalis, O. zealis, and O. zaguliaevi can occur with O. furnacalis, and the taxa can be hard to tell apart.