Friedel's law

Last updated

Friedel's law, named after Georges Friedel, is a property of Fourier transforms of real functions. [1]

Given a real function , its Fourier transform

has the following properties.

where is the complex conjugate of .

Centrosymmetric points are called Friedel's pairs.

The squared amplitude () is centrosymmetric:

The phase of is antisymmetric:

Friedel's law is used in X-ray diffraction, crystallography and scattering from real potentials within the Born approximation. Note that a twin operation (a.k.a.Opération de maclage) is equivalent to an inversion centre and the intensities from the individual reflections are equal under Friedel's law. [2] [3] [4]

References

  1. Friedel G (1913). "Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen". Comptes Rendus. 157: 1533–1536.
  2. Nespolo M, Giovanni Ferraris G (2004). "Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry" (PDF). Acta Crystallogr A. 60 (1): 89–95. Bibcode:2004AcCrA..60...89N. doi:10.1107/S0108767303025625. PMID   14691332.
  3. Friedel G (1904). "Étude sur les groupements cristallins". Extract from Bullettin de la Société de l'Industrie Minérale , Quatrième série, Tomes III et IV. Saint-Étienne: Societè de l'Imprimerie Thèolier J. Thomas et C.
  4. Friedel G. (1923). Bull. Soc. Fr. Minéral.46:79-95.