Funginite

Last updated

Funginite is a maceral, a component, organic in origin, of coal or oil shale, exhibiting several different physical properties and characteristics under particular conditions; its dimensions are based upon its source and place of discovery. [1] Furthermore, it is primarily part of a group of macerals that naturally occur in rocks containing mostly carbon constituents, specifically coal. Due to its nature, research into the chemical structure and formula of funginite is considered limited and lacking. [2] According to Chen et al. referencing ICCP, 2001 [3] (International Committee for Coal and Organic Petrology), alongside the maceral secretinite, they "are both macerals of the inertinite group, which is more commonly known as fossilized charcoal, and were previously jointly classified as the maceral sclerotinite". [2] In the scientific community, the discernment between the two does not remain entirely clear, but there are slight particular and specific differences in regards to the composition between both. [2] It is also the product of fungal development on these carbon rich sedimentary rocks.

Contents

"Amount of inertinite presence based on geological time scale of formation resulting from fires" Fires-in-the-Cenozoic-a-late-flowering-of-flammable-ecosystems-fpls-05-00749-g001.jpg
"Amount of inertinite presence based on geological time scale of formation resulting from fires"

Resulting from its fossilized roots composed of fungal spores and similar material, funginite quantity as an inertinite has a direct correlation to instances of natural wildfires that occurred during the Cenozoic Era approximately 60 million years ago to the present (see chart), ranging from the Paleogene through to the Quaternary.

Etymology

The term "funginite" is based on the word "fungus" that has its roots in Latin, and evolved through to late middle English, [4] while its suffix "-ite" pertains to mineralogical nomenclature. There is speculation that it may have also been derived from ancient Greek roots, utilizing the word for "sponge" instead. [4]

Properties

Funginite's chemical composition consists primarily of carbon and hydrogen, and when compared to other macerals in the same group of inertinites, its theoretical carbon to oxygen ratio was discovered to be low in comparison. [2] The maceral was also found to have a low molecular reaction characteristic based on the Arrhenius equation due to its 'A' factor value, also known as its pre-exponential factor, making funginite nonreactive in comparison to other macerals subjected to the same amount of activation energy or kinetic energy in a system. [5]

In terms of its official classification and designation, funginite is a part of the teloinertinite subgroup, which is part of the inertinite group of macerals. [6]

Funginite also contains higher amounts of carbon and lower amounts of hydrogen than its maceral counterparts, due to the nature of inertinites, as they generally "contain higher proportions of elemental-carbon and lower proportions of elemental-hydrogen compared to vitrinites and liptinites [7] ".

"Coal composed of the three main maceral groups: ~22% vitrinite, ~47% liptinite, and ~31% inertinite" Cannel coal (Cannel City-Amburgy Coal Zone, Middle Pennsylvanian; Jackson North Rt. 15 roadcut, Breathitt County, Kentucky, USA) 4 (29371472973).jpg
"Coal composed of the three main maceral groups: ~22% vitrinite, ~47% liptinite, and ~31% inertinite"

Reflectance and Fluorescence

Among the other maceral categories, funginite can also be classified under huminite and/or vitrinite. Funginite, along with other macerals that fall in the same family such as cutinite and sporinite, according to one study, exhibits an average reflectance value of 0.81%, with a standard deviation of 0.05. The physical characteristics of the "fungal bodies" not only fluctuate and vary, but also determine the constitution of the spores by causing them to be identified as either single celled or multi-celled by nature. [8] This was done alongside resinite, and the four coal samples had several trials conducted. The results indicated that funginite was "nonfluorescent and [presented] the highest reflectance value", [1] based on a study conducted by the ICCP. [3]

Formation

Funginite is primarily found in coal due to the nature of its creation process, which involves a fungal spore or body contaminating resin within trees, and undergoing the heat and pressure process of transformation into coal and other carbon rich substances, which is best summarized as when a "fungus enters a wound in the tree or in the process of rotting the wood or bark can be encapsulated through the release of a resin. [9] ", which is known as the process of cicatrization. [9] Other methods of fungi being incorporated into resin for the potential formation of funginite may also involve insects or other similar organisms that are carrying the fungal matter to be trapped or even purposefully store said material into the resin, unlike the third main possible method that is a result of the aforementioned fungi in question using the resin as sustenance [9]

"A micrograph of funginite" Funginit.jpg
"A micrograph of funginite"

Funginite's development, and more broadly inertinite in general, occurs in forests due to the nature of its properties and characteristics. According to Mastalerz et al. 2011, of the primary groups of macerals, inertinites with a high level of fluorescence and reflectance have these particular traits attributed to the temperature of the fires in which they are formed under, as simply put, their "reflectance is directly related to the fire temperature". [6] Furthermore, given the nature of macerals in general, and how they are based on formerly living organisms, this generally results in higher concentrations of funginite being found in such locations when coal and charcoal are inspected closely at these sites. Funginite is based on fungal spores, and the density of fungal material being present in forests is considered abundantly higher than in other common locations for inertinites.

The research undertaken into funginite, as well as other similar inertinites, may provide clues into understanding the events of instances regarding natural spontaneous combustion, due to the necessary requirements for that event to occur. [6]

Use

"Bituminous coal composed of macerals, demonstrating variance between different maceral composition amongst differinent types of coal" Bituminous Coal (Washington Coal, Upper Pennsylvanian).jpg
"Bituminous coal composed of macerals, demonstrating variance between different maceral composition amongst differinent types of coal"

As of 2010, there has not been sufficient research conducted into the impact on petrology funginite has, and this includes other inertinites and macerals in general. [9] It is also assumed that by understanding the constitution of common and uncommon variants and types of coal alike, locating and identifying deposits rich in a particular type of coal may potentially be made easier, as well as the burning characteristics in the scope of petrology and petrochemical fields.

Increased studies into funginite as a constituent of coal may also assist in the identification and selection of metallurgical coal, as it is a fundamental aspect of producing coke, which is a source of fuel for metallurgical works such as steel production.

The research undertaken into funginite, as well as other similar inertinites, may provide clues into understanding the events of instances regarding natural spontaneous combustion, due to the necessary requirements for that event to occur. [6]

Discovery

"Various macerals under fluorescent light exhibit varying degrees of reflectance" Fluorescence in coal.png
"Various macerals under fluorescent light exhibit varying degrees of reflectance"

According to Hower et al. referencing Jeffrey and Chrysler, 1906, [10] Berkeley, 1848, [11] and Thomas, 1848, [12] fungal constituents and matter are not "new" in the realm of coal and its formation, and the traces of fungal substances in resin, fossilized or not, predates that discovery even further. [9] Currently, funginite, along with other macerals in general, are being researched and identified using micro FTIR (Fourier-transform infrared spectroscopy) mapping, which enables further identification of fluorescence and the organic chemical composition. [13] Further research is being done in regards to small x-ray angle scattering and small angle neutron scattering, SAXS and SANS respectively, as means of "determining the porosity, pore size distribution and internal specific surface area in coals," [14] which would allow for extended research to be conducted into macerals, inertinites, and more specifically, funginite.

Related Research Articles

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

<span class="mw-page-title-main">Lycopodiopsida</span> Class of vascular plants

Lycopodiopsida is a class of vascular plants known as lycopods, lycophytes or other terms including the component lyco-. Members of the class are also called clubmosses, firmosses, spikemosses and quillworts. They have dichotomously branching stems bearing simple leaves called microphylls and reproduce by means of spores borne in sporangia on the sides of the stems at the bases of the leaves. Although living species are small, during the Carboniferous, extinct tree-like forms (Lepidodendrales) formed huge forests that dominated the landscape and contributed to coal deposits.

<span class="mw-page-title-main">Bituminous coal</span> Collective term for higher-quality coal

Bituminous coal, or black coal, is a type of coal containing a tar-like substance called bitumen or asphalt. Its coloration can be black or sometimes dark brown; often there are well-defined bands of bright and dull material within the seams. It is typically hard but friable. Its quality is ranked higher than lignite and sub-bituminous coal, but lesser than anthracite. It is the most abundant rank of coal, with deposits found around the world, often in rocks of Carboniferous age. Bituminous coal is formed from sub-bituminous coal that is buried deeply enough to be heated to 85 °C (185 °F) or higher.

<span class="mw-page-title-main">Kerogen</span> Solid organic matter in sedimentary rocks

Kerogen is solid, insoluble organic matter in sedimentary rocks. It consists of a variety of organic materials, including dead plants, algae, and other microorganisms, that have been compressed and heated by geological processes. All the kerogen on earth is estimated to contain 1016 tons of carbon. This makes it the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold.

<span class="mw-page-title-main">Polypore</span> Group of fungi

Polypores are a group of fungi that form large fruiting bodies with pores or tubes on the underside. They are a morphological group of basidiomycetes-like gilled mushrooms and hydnoid fungi, and not all polypores are closely related to each other. Polypores are also called bracket fungi or shelf fungi, and they characteristically produce woody, shelf- or bracket-shaped or occasionally circular fruiting bodies that are called conks.

Inertinite refers to a group of partially oxidized organic materials or fossilized charcoals, all sharing the characteristic that they typically are inert when heated in the absence of oxygen. Inertinite is a common maceral in most types of coal. The main inertinite submacerals are fusinite, semifusinite, micrinite, macrinite and funginite, with semifusinite being the most common. From the perspective of coal combustion, inertinite can be burned to yield heat, but does not yield significant volatile fractions during coking.

A maceral is a component, organic in origin, of coal or oil shale. The term 'maceral' in reference to coal is analogous to the use of the term 'mineral' in reference to igneous or metamorphic rocks. Examples of macerals are inertinite, vitrinite, and liptinite.

In coal geology, liptinite is the finely-ground and macerated remains found in coal deposits. It replaced the term exinite as one of the four categories of kerogen. Liptinites were originally formed by spores, pollen, dinoflagellate cysts, leaf cuticles, and plant resins and waxes.

<span class="mw-page-title-main">Coalbed methane</span> Form of natural gas extracted from coal beds

Coalbed methane, coalbed gas, or coal seam gas (CSG) is a form of natural gas extracted from coal beds. In recent decades it has become an important source of energy in United States, Canada, Australia, and other countries.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza. They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Conidium</span> Asexual, non-motile spore of a fungus

A conidium, sometimes termed an asexual chlamydospore or chlamydoconidium, is an asexual, non-motile spore of a fungus. The word conidium comes from the Ancient Greek word for dust, κόνις (kónis). They are also called mitospores due to the way they are generated through the cellular process of mitosis. They are produced exogenously. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal.

<span class="mw-page-title-main">Cannel coal</span> Type of bituminous coal or oil shale

Cannel coal or candle coal is a type of bituminous coal, also classified as terrestrial type oil shale. Due to its physical morphology and low mineral content cannel coal is considered to be coal but by its texture and composition of the organic matter it is considered to be oil shale. Although historically the term cannel coal has been used interchangeably with boghead coal, a more recent classification system restricts cannel coal to terrestrial origin, and boghead coal to lacustrine environments.

<i>Rhizopus oligosporus</i> Species of fungus

Rhizopus oligosporus is a fungus of the family Mucoraceae and is a widely used starter culture for the production of tempeh at home and industrially. As the mold grows it produces fluffy, white mycelia, binding the beans together to create an edible "cake" of partly catabolized soybeans. The domestication of the microbe is thought to have occurred in Indonesia several centuries ago.

<i>Aspergillus terreus</i> Species of fungus

Aspergillus terreus, also known as Aspergillus terrestris, is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, A. terreus is now known to be capable of sexual reproduction. This saprotrophic fungus is prevalent in warmer climates such as tropical and subtropical regions. Aside from being located in soil, A. terreus has also been found in habitats such as decomposing vegetation and dust. A. terreus is commonly used in industry to produce important organic acids, such as itaconic acid and cis-aconitic acid, as well as enzymes, like xylanase. It was also the initial source for the drug mevinolin (lovastatin), a drug for lowering serum cholesterol.

<span class="mw-page-title-main">Evolution of fungi</span> Origin and diversification of fungi through geologic time

Fungi diverged from other life around 1.5 billion years ago, with the glomaleans branching from the "higher fungi" (dikaryans) at ~570 million years ago, according to DNA analysis. Fungi probably colonized the land during the Cambrian, over 500 million years ago,, and possibly 635 million years ago during the Ediacaran, but terrestrial fossils only become uncontroversial and common during the Devonian, 400 million years ago.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

Tectonic Burial is the deformation of rocks caused by extreme pressure over millions of years. It often causes temperature evolutions and deep burials. Tectonic burial is usually the result of continental collisions or subduction in a region. An increase in burial depth leads to a weakened basin and basement but creates better preservation structure within the basement.

Marie-Therese Mackowsky (1913-1986) was a German mineralogist.

Bituminite is an autochthonous maceral that is a part of the liptinite group in lignite, that occurs in petroleum source rocks originating from organic matter such as algae which has undergone alteration or degradation from natural processes such as burial. It occurs as fine-grained groundmass, laminae or elongated structures that appear as veinlets within horizontal sections of lignite and bituminous coals, and also occurs in sedimentary rocks. Its occurrence in sedimentary rocks is typically found surrounding alginite, and parallel along bedding planes. Bituminite is not considered to be bitumen because its properties are different from most bitumens. It is described to have no definite shape or form when present in bedding and can be identified using different kinds of visible and fluorescent lights. There are three types of bituminite: type I, type II and type III, of which type I is the most common. The presence of bituminite in oil shales, other oil source rocks and some coals plays an important factor when determining potential petroleum-source rocks.

The Blanowice Formation is a geologic formation in Częstochowa, Poland. It is late Pliensbachian-Lowermost Toarcian age. Plant fossils have been recovered from this formation. Along with the Drzewica Formation is part of the Depositional sequence IV-VII of the late lower Jurassic Polish Basin. Deposits of sequences IV, V, VI and VII make up the Blanowice Formation, being all four sequences are of Pliensbachian age, documented by megaspores (Horstisporites). On the upper strata, “sub-coal beds" cover the sequence VII-lower VIII, while the uppermost part of VIII is identified with the Ciechocinek Formation. The Blanowice Formation has been known for decades thanks to the abundant plant fossils and plant roots, but mostly due to the Blanowice Brown Coals, where the oldest Biomolecules found worldwide have been recovered. The Mrzygłód mine dinocyst assemblage is taxonomically undiversified, containing specimens that are good age indicators allowing relatively precise suggestion of its age. Luehndea spinosa, with a single recovered specimen spans between the Late Pliensbachian (Margaritaus) to the Lowermost Toarcian (Tenuicostatum). Other ocal dinocysts such as Mendicodinium range Late Pliensbachian–Aalenian, a wider stratigraphic range. The lower part of the formation is coeval in age with the Gielniów Formation and Drzewica Formation, Lobez Formation and Komorowo Formation (Pomerania), Olsztyn Formation, the lower part of the Rydeback Member of the Rya Formation, lower Fjerritslev or Gassum Formation, lower and middle Sorthat Formation (Bornholm), Neringa Formation (Lithuania). The upper part is coeval with the lowermost upper Rydeback Member, upper Gassum Formation and lower Lava Formation (Lithuania).

References

  1. 1 2 "Photomicrograph Atlas- Homepage, USGS: Energy Resources Program". energy.usgs.gov. Retrieved 2020-01-23.
  2. 1 2 3 4 Chen, Y.; Caro, L. D.; Mastalerz, M.; Schimmelmann, A.; Blandón, A. (2013). "Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR". Journal of Microscopy. 249 (1): 69–81. doi:10.1111/j.1365-2818.2012.03685.x. ISSN   1365-2818. PMID   23170999. S2CID   205343835.
  3. 1 2 "The new inertinite classification (ICCP system 1994)". Fuel and Energy Abstracts. 43 (3): 219. May 2002. doi:10.1016/S0140-6701(02)86016-7.
  4. 1 2 "Fungus | Definition of Fungus by Lexico". Lexico Dictionaries | English. Archived from the original on September 14, 2019. Retrieved 2020-01-23.{{cite web}}: More than one of |archivedate= and |archive-date= specified (help); More than one of |archiveurl= and |archive-url= specified (help)
  5. "Arrhenius Equation". Chemistry LibreTexts. 2013-10-02. Retrieved 2020-02-05.
  6. 1 2 3 4 Mastalerz, Maria; Drobniak, Agnieszka; Hower, James C.; O’Keefe, Jennifer M. K. (2011-01-01), Stracher, Glenn B.; Prakash, Anupma; Sokol, Ellina V. (eds.), "Chapter 3 - Spontaneous Combustion and Coal Petrology", Coal and Peat Fires: A Global Perspective, Elsevier, pp. 47–62, doi:10.1016/b978-0-444-52858-2.00003-7, ISBN   978-0-444-52858-2 , retrieved 2020-02-13
  7. Kandiyoti, Rafael; Herod, Alan; Bartle, Keith; Morgan, Trevor (2017-01-01), Kandiyoti, Rafael; Herod, Alan; Bartle, Keith; Morgan, Trevor (eds.), "2 - Solid fuels: Origins and characterization", Solid Fuels and Heavy Hydrocarbon Liquids (Second Edition), Elsevier, pp. 11–23, doi:10.1016/b978-0-08-100784-6.00002-3, ISBN   978-0-08-100784-6 , retrieved 2020-02-13
  8. "Photomicrograph Atlas". U.S. Geological Survey.
  9. 1 2 3 4 5 Hower, James C.; O'Keefe, Jennifer M. K.; Volk, Thomas J.; Watt, Michael A. (2010-07-01). "Funginite–resinite associations in coal". International Journal of Coal Geology. 83 (1): 64–72. doi:10.1016/j.coal.2010.04.003. ISSN   0166-5162.
  10. Jeffrey, E.C.; Chrysler, M.A. (1906). "The lignites of Brandon". Fifth Report of the Vermont State Geologist. 6: 195–201 via www.scopus.com.
  11. F.L.S, Rev M. J. Berkeley M. A. (1848-12-01). "XXXIX.—On three species of mould detected by Dr. Thomas in the amber of East Prussia". Annals and Magazine of Natural History. 2 (12): 380–383. doi:10.1080/03745485809494736. ISSN   0374-5481.
  12. Thomas, Dr K. (1848-12-01). "XXXVIII.—On the amber beds of East Prussia". Annals and Magazine of Natural History. 2 (12): 369–380. doi:10.1080/03745485809494735. ISSN   0374-5481. S2CID   85832933.
  13. Chen, Y.; Caro, L.D.; Mastalerz, M.; Schimmelmann, A.; Blandón, A. (January 2013). "Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR: MAPPING THE CHEMISTRY OF RESINITE, FUNGINITE AND ASSOCIATED VITRINITE". Journal of Microscopy. 249 (1): 69–81. doi:10.1111/j.1365-2818.2012.03685.x. PMID   23170999. S2CID   205343835.
  14. Radlinski, A. P; Mastalerz, M; Hinde, A. L; Hainbuchner, M; Rauch, H; Baron, M; Lin, J. S; Fan, L; Thiyagarajan, P (2004-08-10). "Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal". International Journal of Coal Geology. 59 (3): 245–271. doi:10.1016/j.coal.2004.03.002. ISSN   0166-5162.