Heisenberg cut

Last updated

In quantum mechanics, a Heisenberg cut is the hypothetical interface between quantum events and an observer's information, knowledge, or conscious awareness. Below the cut everything is governed by the wave function; above the cut a classical description is used. [1] The Heisenberg cut is a theoretical construct; it is not known whether actual Heisenberg cuts exist, where they might be found, or how they could be detected experimentally. However, the concept is useful for analysis. [1] [2] [3] [4]

The cut is named after Werner Heisenberg's work on the Copenhagen interpretation of quantum mechanics in which it is associated with wave function collapse. [5] Interpretations of quantum mechanics that do not recognise wave function collapse (such as De Broglie–Bohm or many-worlds interpretations) do not require Heisenberg cuts.

Heisenberg stated the concept in many different ways in his work, for one example he wrote: "In this situation it follows automatically that, in a mathematical treatment of the process, a dividing line must be drawn between, on the one hand, the apparatus which we use as an aid in putting the question and thus, in a way, treat as part of ourselves, and on the other hand, the physical systems we wish to investigate. The latter we represent mathematically as a wave function. This function, according to quantum theory, consists of a differential equation which determines any future state from the present state of the function... The dividing line between the system to be observed and the measuring apparatus is immediately defined by the nature of the problem but it obviously signifies no discontinuity of the physical process. For this reason there must, within limits, exist complete freedom in choosing the position of the dividing line." [6]

See also

Notes

  1. 1 2 Quantum Mechanical Theories of Consciousness, Henry P. Stapp
  2. "Heisenberg Cut"
  3. Atmanspacher, Harald (1997). "Cartesian cut, Heisenberg cut, and the concept of complexity". World Futures. 49 (3–4): 333–355. doi:10.1080/02604027.1997.9972639.
  4. Vecchi, Italo (2002). "Are classical probabilities instances of quantum amplitudes?". arXiv: quant-ph/0206147 .
  5. "Something Old, Something New: Heisenberg's Response to EPR"
  6. "What classicality? Decoherence and Bohr's classical concepts."

Related Research Articles

The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as features of it date to the development of quantum mechanics during 1925–1927, and it remains one of the most commonly taught.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Schrödinger's cat</span> Thought experiment devised by the physicist Erwin Schrödinger

In quantum mechanics, Schrödinger's cat is a thought experiment that illustrates a paradox of quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in a closed box, as a result of its fate being linked to a random subatomic event that may or may not occur.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to the wavefunction, it also postulates an actual configuration of particles exists even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).

An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters.

In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. Collapse is a black box for a thermodynamically irreversible interaction with a classical environment.

<span class="mw-page-title-main">Philosophy of physics</span> Truths and principles of the study of matter, space, time and energy

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas:

The many-minds interpretation of quantum mechanics extends the many-worlds interpretation by proposing that the distinction between worlds should be made at the level of the mind of an individual observer. The concept was first introduced in 1970 by H. Dieter Zeh as a variant of the Hugh Everett interpretation in connection with quantum decoherence, and later explicitly called a many or multi-consciousness interpretation. The name many-minds interpretation was first used by David Albert and Barry Loewer in 1988.

In physics, hidden-variable theories are proposals to provide explanations of quantum mechanical phenomena through the introduction of hypothetical entities. The existence of fundamental indeterminacy for some measurements is assumed as part of the mathematical formulation of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle. Most hidden-variable theories are attempts to avoid quantum indeterminacy, but possibly at the expense of requiring the existence of nonlocal interactions.

In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to two major revolutions in physics that created a shift in the original scientific paradigm: the theory of relativity and the development of quantum mechanics. This article describes how physicists discovered the limitations of classical physics and developed the main concepts of the quantum theory that replaced it in the early decades of the 20th century. It describes these concepts in roughly the order in which they were first discovered. For a more complete history of the subject, see History of quantum mechanics.

The universal wavefunction, introduced by Hugh Everett in his PhD thesis The Theory of the Universal Wave Function, informs a core concept in the relative state interpretation or many-worlds interpretation of quantum mechanics. It later received investigation from James Hartle and Stephen Hawking in which they derived a specific solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang cosmology.

The ensemble interpretation of quantum mechanics considers the quantum state description to apply only to an ensemble of similarly prepared systems, rather than supposing that it exhaustively represents an individual physical system.

There is a diversity of views that propose interpretations of quantum mechanics. They vary in how many physicists accept or reject them. An interpretation of quantum mechanics is a conceptual scheme that proposes to relate the mathematical formalism to the physical phenomena of interest. The present article is about those interpretations which, independently of their intrinsic value, remain today less known, or are simply less debated by the scientific community, for different reasons.

In physics, the observer effect is the disturbance of an observed system by the act of observation. This is often the result of instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire; this is difficult to do without letting out some of the air, thus changing the pressure. Similarly, seeing non-luminous objects requires light hitting the object, and causing it to reflect that light. While the effects of observation are often negligible, the object still experiences a change. This effect can be found in many domains of physics, but can usually be reduced to insignificance by using different instruments or observation techniques.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

The von Neumann–Wigner interpretation, also described as "consciousness causes collapse", is an interpretation of quantum mechanics in which consciousness is postulated to be necessary for the completion of the process of quantum measurement.

<i>Quantum Reality</i> Popular science book by physicist Nick Herbert

Quantum Reality is a 1985 popular science book by physicist Nick Herbert, a member of the Fundamental Fysiks Group which was formed to explore the philosophical implications of quantum theory. The book attempts to address the ontology of quantum objects, their attributes, and their interactions, without reliance on advanced mathematical concepts. Herbert discusses the most common interpretations of quantum mechanics and their consequences in turn, highlighting the conceptual advantages and drawbacks of each.